Communication
ChemComm
green tea as the test sample. As shown in Fig. S9 (ESI†) the me–Au–
Fe O DBNPs were first dispersed in real samples spiked with PM
3 4
3 (a) J. N. Wang, C. Zhang, H. X. Wang, F. Z. Yang and X. R. Zhang,
Talanta, 2001, 54, 1185; (b) V. B. Patil and M. S. Shingare, Talanta,
1
994, 41, 367.
molecules at three different concentrations (100, 200, 400 nM).
Through the ligand replacement reaction, most of the hydrolyzate of
the PM molecules will bind on the me–Au–Fe O DBNPs in the
4
M. Lowry, S. O. Fakayode, M. L. Geng, G. A. Baker, L. Wang,
M. E. McCarroll, G. Patomay and I. M. Warner, Anal. Chem., 2008,
8
0, 4551.
(a) Q. Q. Li, F. Liu, C. Lu and J. M. Liu, J. Phys. Chem. C, 2011,
15, 10964; (b) Z. F. Zhang, H. Cui, C. Z. Lai and L. J. Liu, Anal.
Chem., 2005, 77, 3324; (c) C. F. Duan and H. Cui, Chem. Commun.,
3
4
5
basic system. When a small magnet was put near the vial, the
DBNPs with DMP were drawn to the wall of the vial. After discarding
the remaining sample solutions, the reddish brown aggregates were
redispersed in a certain amount of water for measuring of the CL
signals. The above separation–redispersion procedure was repeated
two times, and noninterference detection was achieved. The
recovery for an added known amount of PM in the green tea
samples was in the range of 95–104% (Fig. S9C, ESI†), which
1
2
2
009, 2574; (d) H. Cui, J. Z. Guo, N. Li and L. J. Liu, J. Phys. Chem. C,
008, 112, 11319.
6
(a) M. C. Zhang, D. M. Han, C. Lu and J. M. Lin, J. Phys. Chem. C,
2012, 116, 6371; (b) L. Yang, G. J. Guan, S. H. Wang and Z. P. Zhang,
J. Phys. Chem. C, 2012, 116, 3356; (c) N. Na, S. C. Zhang, S. A. Wang
and X. R. Wang, J. Am. Chem. Soc., 2006, 128, 14420.
7
8
(a) Y. J. Song, K. G. Qu, C. Zhao, J. S. Ren and X. G. Qu, Adv. Mater.,
2010, 22, 2206; (b) N. P. Sardesai, J. C. Barron and J. F. Rusling, Anal.
Chem., 2011, 83, 6698.
3 4
indicated the utility of the methionine modification of Au–Fe O
DBNP CL nanosensors for the detection of pesticide residues in
complex samples.
(a) C. Wang, C. J. Xu, H. Zeng and S. H. Sun, Adv. Mater., 2009,
21, 3045; (b) K. C. F. Leung, S. H. Xuan, X. M. Zhu, D. W. Wang,
C. P. Chak, S. F. Lee, W. K. W. Ho and B. C. T. Chung, Chem. Soc.
Rev., 2012, 41, 1911; (c) H. Yu, M. Chen, P. M. Rice, S. X. Wang,
R. L. White and S. H. Sun, Nano Lett., 2005, 5, 379.
(a) Y. M. Zhai, L. H. Jin, P. Wang and S. J. Dong, Chem. Commun.,
2011, 47, 8268; (b) C. J. Xu, J. Xie, D. Ho, C. Wang, N. Kohler,
E. G. Walsh, J. R. Morgan, Y. E. Chin and S. H. Sun, Angew. Chem.,
Int. Ed., 2008, 47, 173.
In summary, this work has proposed a sample selective CL
switch-on chemosensor by the modification of the radical scaven-
ger methionine on the surface of Au–Fe O DBNPs. The sensing
9
3
4
mechanism is based on our new findings that the replacement of
methionine ligands by the hydrolyzate of organophosphorothioate
pesticides and a magnetic separation–redispersion process for
inhibiting the scavenging of surface radicals, leads to the switch-
on of the CL. The CL switch-on chemosensor was used to
selectively detect the nonredox organophosphorothioate pesticide
molecule parathion-methyl and exhibited high anti-interference
in real samples after a simple magnetic separation. Moreover, the
1
1
0 C. F. Moffat and K. J. Whittle, Environmental Contaminants in Food,
Sheffield Academic Press, Sheffield, 1999.
1 (a) D. Sharma, A. Nagpal, Y. B. Pakade and J. K. Katnoria, Talanta,
2010, 82, 1050; (b) G. A. Jamal, Toxicol. Rev., 1997, 16, 133; (c) Y. B.
Han, S. J. Liu, B. H. Liu, C. L. Jiang and Z. P. Zhang, RSC Adv., 2014,
4, 2776; (d) L. L. Zhang, C. L. Jiang and Z. P. Zhang, Nanoscale, 2013,
5
, 3773.
1
2 A. Kamel, C. Byme, C. Vigo, J. Ferrario, C. Stafford, G. Verdin,
F. Siegelman, S. Knizner and J. Hetrick, Water Res., 2009, 43, 522.
construction of this CL chemosensor does not involve the use of 13 (a) Y. J. Kim, Y. A. Cho, H. S. Lee, Y. T. Lee, S. J. Gee and B. D.
Hammock, Anal. Chim. Acta, 2003, 475, 85; (b) G. D. Liu, J. Wang,
R. Barry, C. Petersen, C. Timchalk, P. L. Gassman and Y. H. Lin,
Chem. – Eur. J., 2008, 14, 9951.
antibodies or enzymes or require complicated surface modifica-
tion and thus is very simple and inexpensive. The novel and facile
strategy reported here should open a new window of interest in 14 (a) C. G. Zambonin, M. Quinto, N. Devietro and F. Palmisano, Food
Chem., 2004, 86, 269; (b) C. Blasco, M. Fern ´a ndez, Y. Pic o´ and
G. Font, J. Chromatogr. A, 2004, 1030, 77.
5 Y. M. Zhai, L. H. Jin, P. Wang and S. J. Dong, Chem. Commun., 2011,
47, 8268.
6 (a) C. Wang, H. Daimon and S. Sun, Nano Lett., 2009, 9, 1493;
the application of nanomaterials for the assay of organophos-
phorothioate pesticides in agricultural products and the develop-
ment of CL chemosensors for the detection of a wide range of
organic and biological molecules.
1
1
(
b) R. D. O’Neil, S. Chang, J. P. Lowry and C. J. McNeil, Biosens.
This work was supported by the Natural Science Founda-
Bioelectron., 2004, 19, 1521.
tion of China (No. 21275145, 21277145, 21375131, 21371174), 17 X. L. Sun, S. J. Guo, Y. Liu and S. H. Sun, Nano Lett., 2012, 12, 4859.
1
1
2
2
8 H. Y. Sun, X. L. Jian, Y. Y. Han, Z. Jiang and D. R. Chen, Eur. J. Inorg.
Chem., 2013, 109.
9 W. Chen, L. Hong, A. L. Liu, J. Q. Liu, X. H. Lin and X. H. Xia,
Talanta, 2012, 99, 643.
the National Science & Technology Pillar Program (Grant
012BAJ24B02) and the Natural Science Foundation of Anhui
Province (1408085QB29).
2
0 (a) B. Liu and L. L. Mcconnell, Chemosphere, 2001, 44, 1315;
(
b) T. Wu, Q. Gan and U. Jans, Environ. Sci. Technol., 2006, 40, 5428.
1 (a) I. Haiduc, J. Organomet. Chem., 2001, 623, 29; (b) I. S. Koo, D. Ali,
K. Yang, G. W. Vanloon and E. Buncel, Bull. Korean Chem. Soc., 2009,
Notes and references
30, 1257.
1
(a) G. J. Guan, L. Yang, Q. S. Mei, K. Zhang, Z. P. Zhang and
M. Y. Han, Anal. Chem., 2012, 84, 9492; (b) C. B. Robin, K. Jyotsna,
N. Yogesh, W. Nishima, B. Aman and C. R. Suri, Analyst, 2011,
2
2
2 K. Zhang, Q. S. Mei, G. J. Guan, B. H. Liu, S. H. Wang and
Z. P. Zhang, Anal. Chem., 2010, 82, 9579.
3 (a) M. A. White, J. A. Johnson, J. T. Koberstein and N. J. Turro, J. Am.
Chem. Soc., 2006, 128, 11357; (b) X. Y. Wang, R. D. Tilley and
J. J. Watkins, Langmuir, 2014, 30, 151.
1
2
36, 2125; (c) D. J. Beale, N. P. Porter and F. A. Roddick, Talanta,
009, 78, 342.
2
(a) R. K. Zhang, X. A. Cao, Y. H. Liu and X. Y. Chang, Anal. Chem.,
2
4 (a) I. Cano, A. M. Chapman, A. Urakawa and P. W. Leeuwen, J. Am.
Chem. Soc., 2014, 136, 2520; (b) J. C. Boyer, M. P. Manseau,
J. I. Murray and F. C. Veggel, Langmuir, 2010, 26, 1157.
2
2
011, 83, 8975; (b) M. L. Liu, Z. Lin and J. M. Lin, Anal. Chim. Acta,
010, 670, 1.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2014