RSC Advances
Paper
change upon immobilization were directly correlated to each 11 Y. Saylan, L. Uzun and A. Denizli, Ind. Eng. Chem. Res., 2015,
other and they varied in the order of L-PEI2-MS > L-PEI1-MS > 54, 454.
L-AAS-MS. The activity-related assays revealed that the confor- 12 X. Y. Liu, S. W. Zheng, R. Y. Hong, Y. Q. Wang and
mation, activity, thermal and storage stability as well as the W. G. Feng, Colloids Surf., A, 2014, 443, 425.
reusability of the immobilized lipases were improved as 13 Y. Yong, Y. Bai, Y. Li, L. Lin, Y. Cui and C. Xia, J. Magn. Magn.
compared to the free lipase, and increased in the order of
L-PEI1-MS > L-PEI2-MS > L-AAS-MS.
Mater., 2008, 320, 2350.
14 Y. Jiang, C. Guo, H. Xia, M. Iram, C. Liu and H. Liu, J. Mol.
Catal. B: Enzym., 2009, 58, 103.
The enhanced activities and kinetic parameters of L-PEI1-MS
and L-PEI2-MS at the elevated temperatures fairly suggested the 15 S. Abramson, C. Meiller, P. Beaunier, V. Dupuis,
direct correlation of the lipase activity and the b-sheet content,
which increased in the order of L-PEI1-MS > L-PEI2-MS > L-AAS-
MS as compared to the free lipase.
L. Perrigaud, A. Bee and V. Cabuil, J. Mater. Chem., 2010,
20, 4916.
16 B. Saha, J. Saiki and G. Das, Analyst, 2015, 140, 532.
The obtained results demonstrated that an appropriate 17 O. Barbosa, R. Torres, C. Ortiz, A. Berenguer-Murcia,
surface functionalization method is needed, such as PEI1-MS
among the three samples presented in this work, to improve
R.
C.
Rodrigues
and
R.
Fernandez-Lafuente,
Biomacromolecules, 2013, 14, 2433.
not only the loading capacity of the magnetic particles, but also 18 L. Zang, J. Qiu, X. Wu, W. Zhang, E. Sakai and Y. Wei, Ind.
the conformation and activity of the immobilized enzyme. This Eng. Chem. Res., 2014, 53, 3448.
study opens up new perspectives for the design of polymer- 19 G. Zhang, J. Ma, J. Wang, Y. Li, G. Zhang, F. Zhang and
modied nanoparticles for the efficient immobilization of
enzymes with enhanced activity and stability.
X. Fan, Ind. Eng. Chem. Res., 2014, 53, 19878.
20 F. Secundo, Chem. Soc. Rev., 2013, 42, 6250.
21 I. Koh, X. Wang, B. Varughese, L. Isaacs, S. H. Ehrman and
D. S. English, J. Phys. Chem. B, 2006, 110, 1553; Y. Li,
X. Q. Xu, C. H. Deng, P. Y. Yang and X. M. Zhang,
J. Proteome Res., 2007, 6, 3849; S. Lin, D. Yun, D. W. Qi,
C. H. Deng, Y. Li and X. M. Zhang, J. Proteome Res., 2008,
7, 1297.
Acknowledgements
This work is nancially supported by the National Institute of
Genetic Engineering and Biotechnology in Iran. The authors
thankfully acknowledge the NTNU NanoLab for providing
STEM characterization facility. The Research Council of Norway 22 S. Lin, Z. X. Lin, G. P. Yao, C. H. Deng, P. Y. Yang and
is acknowledged for the support to NTNU NanoLab through the X. M. Zhang, Rapid Commun. Mass Spectrom., 2007, 21, 3910.
Norwegian Micro- and Nano-Fabrication Facility, NorFab 23 D. Li, W. Y. Teoh, J. J. Gooding, C. Selomulya and R. Amal,
(197411/V30).
Adv. Funct. Mater., 2010, 20, 1767.
24 J. Liu, W. Wang, H. Liu, Y. Zhou, H. Zhang and X. Zhou, RSC
Adv., 2014, 4, 25983.
25 Z. Qu, F. Hu, K. Chen, Z. Duan, H. Gu and H. Xu, J. Colloid
Interface Sci., 2013, 398, 82; X. Liu, X. Chen, Y. Li, X. Wang,
X. Peng and W. Zhu, ACS Appl. Mater. Interfaces, 2012, 4,
5169.
Notes and references
1 R. Diosimo, J. McAuliffe, A. J. Poulose and G. Bohlmann,
Chem. Soc. Rev., 2013, 42, 6437.
2 R. A. Sheldon and S. Pelt, Chem. Soc. Rev., 2013, 42, 6223.
3 Y. Masuda, S. Kugimiya, Y. Kawachia and K. Kato, RSC Adv., 26 Y. H. Lien and T. M. Wu, J. Colloid Interface Sci., 2008, 326,
2014, 4, 3573. 517.
4 M. Kalantari, M. Kazemeini, F. Tabandeh and A. Arpanaei, 27 Y. Shen, W. Guo, L. Qi, J. Qiao, F. Wang and L. Mao, J. Mater.
J. Mater. Chem., 2012, 22, 8385. Chem. B, 2013, 1, 2260.
5 K. Murai, T. Nonoyama, T. Saito and K. Kato, Catal. Sci. 28 S. Cantone, V. Ferrario, L. Corici, C. Ebert, D. Fattor,
Technol., 2012, 2, 310; R. C. Rodrigues, C. Ortiz,
P. Spizzo and L. Gardossi, Chem. Soc. Rev., 2013, 42, 6262.
A. Berenguer-Murcia, R. Torres and R. Fernandez-Lafuente, 29 Y. Ren, J. G. Rivera, L. He, H. Kulkarni, D. K. Lee and
Chem. Soc. Rev., 2013, 42, 6290.
P. B. Messersmith, BMC Biotechnol., 2011, 11, 63.
6 C. Garcia-Galan, A. Berenguer-Murcia, R. Fernandez- 30 K. Solanki and M. N. Gupta, New J. Chem., 2011, 35, 2551.
Lafuente and R. C. Rodrigues, Adv. Synth. Catal., 2011, 353, 31 H. H. P. Yiu, S. C. McBain, A. J. E. Haj and J. Dobson,
2885; E. T. Hwang and M. B. Gu, Eng. Life Sci., 2013, 13, 49;
M. L. Verma, C. J. Barrow and M. Puri, Appl. Microbiol. 32 S. Chibowski, J. Patkowski and E. Grzadka, J. Colloid Interface
Biotechnol., 2013, 97, 23. Sci., 2009, 329, 1.
7 D. Shao, K. Xu, X. Song, J. Hu, W. Yang and C. Wang, J. 33 L. Lei, Y. X. Bai, Y. F. Li, L. X. Yi, Y. Yang and C. G. Xia,
Colloid Interface Sci., 2009, 336, 526.
J. Magn. Magn. Mater., 2009, 321, 252.
8 Z. Chen, W. Xu, L. Jin, J. Zha, T. Tao, Y. Lina and Z. Wang, J. 34 P. Adlercreutz, Chem. Soc. Rev., 2013, 42, 6406.
Nanotechnology, 2007, 18, 435601.
Mater. Chem. A, 2014, 2, 18339.
9 H. H. P. Yiu and M. A. Keane, J. Chem. Technol. Biotechnol.,
2012, 87, 583.
35 K. Tanaka, A. Narita, N. Kitamura, W. Uchiyama, M. Morita,
T. Inubushi and Y. Chujo, Langmuir, 2010, 26, 11759.
36 W. Stober, A. Fink and E. Bohn, J. Colloid Interface Sci., 1968,
26, 62.
10 C. C. Berry and A. S. G. Curtis, J. Phys. D: Appl. Phys., 2003, 36,
198.
33326 | RSC Adv., 2015, 5, 33313–33327
This journal is © The Royal Society of Chemistry 2015