Full Paper
a period of 10 h. The obtained data conformed to pseudo first-
order kinetics. The pseudo first-order rate constants k’obs were de-
termined by a nonlinear least-squares fitting method based on
Equation (1). Kinetic parameters were obtained from an average of
at least three independent measurements.
Keywords: cleavage
calculations · ligand design · macrocyclic ligands · reaction
mechanisms
reactions
·
density
functional
The dependence of the initial rate of the reaction on the concen-
tration of the substrate (HPNP) was studied at pH 7 (10 mm aque-
ous HEPES buffer) and 208C. Kinetic UV/Vis data were obtained by
the same procedure as described above. The concentration of
zinc(II) or copper(II) ions (0.2 mm) was the same in all experiments,
while the substrate concentration was varied in each experiment
from 0.2 to 4.0 mm. Michaelis–Menten saturation kinetic behavior
was observed. The Michaelis–Menten parameters were obtained by
fitting the data with Equation (2) above.
[1] N. H. Williams, B. Takasaki, M. Wall, J. Chin, Acc. Chem. Res. 1999, 32,
485–493.
[2] G. K. Schroeder, C. Lad, P. Wyman, N. H. Williams, R. Wolfenden, Proc.
Natl. Acad. Sci. USA 2006, 103, 4052–4055.
[3] a) J. Weston, Chem. Rev. 2005, 105, 2151–2174; b) W. W. Cleland, A. C.
´
Hengge, Chem. Rev. 2006, 106, 3252–3278; c) N. Mitic, S. J. Smith, A.
Neves, L. W. Guddat, L. R. Gahan, G. Schenk, Chem. Rev. 2006, 106,
3338–3363; d) W. L. Ward, K. Plakos, V. J. DeRose, Chem. Rev. 2014, 114,
4318–4342.
[4] a) J. R. Morrow, O. Iranzo, Curr. Opin. Chem. Biol. 2004, 8, 192–200;
b) A. K. Yatsimirsky, Coord. Chem. Rev. 2005, 249, 1997–2011; c) F.
Mancin, P. Tecilla, New J. Chem. 2007, 31, 800–817; d) D. Desbouis, I. P.
Troitsky, M. J. Belousoff, L. Spiccia, B. Graham, Coord. Chem. Rev. 2012,
256, 897–937; e) F. Mancin, P. Scrimin, P. Tecilla, Chem. Commun. 2012,
48, 5545–5559; f) H. Korhonen, N. H. Williams, S. Mikkola, J. Phys. Org.
Chem. 2013, 26, 182–186; g) R. Salvio, Chem. Eur. J. 2015, 21, 10960–
10971; h) M. Subat, K. Woinaroschy, C. Gerstl, B. Sarkar, W. Kaim, B.
Kçnig, Inorg. Chem. 2008, 47, 4661–4668; i) B. Gruber, E. Kataev, J.
Aschenbrenner, S. Stadlbauer, B. Kçnig, J. Am. Chem. Soc. 2011, 133,
20704–20707; and references therein.
[5] E. V. Anslyn, D. M. Perreault, Angew. Chem. Int. Ed. Engl. 1997, 36, 432–
450; Angew. Chem. 1997, 109, 470–490.
[6] a) T. Niittymꢅki, H. Lçnnberg, Org. Biomol. Chem. 2006, 4, 15–25; b) H.
Lçnnberg, Org. Biomol. Chem. 2011, 9, 1687–1703.
[7] M. Wall, R. C. Hynes, J. Chin, Angew. Chem. Int. Ed. Engl. 1993, 32, 1633–
1635; Angew. Chem. 1993, 105, 1696–1697.
[8] S. Liu, A. D. Hamilton, Bioorg. Med. Chem. Lett. 1997, 7, 1779–1784.
[9] S. Liu, Z. Luo, A. D. Hamilton, Angew. Chem. Int. Ed. Engl. 1997, 36,
1633–1635; Angew. Chem. 1997, 109, 1706–1709.
[10] O. Iranzo, T. Elmer, J. P. Richard, J. R. Morrow, Inorg. Chem. 2003, 42,
7737–7746.
[11] R. Cacciapaglia, A. Casnati, L. Mandolini, D. N. Reinhoudt, R. Salvio, A.
Sartori, R. Ungaro, J. Am. Chem. Soc. 2006, 128, 12322–12330.
[12] G. Feng, J. C. Mareque-Rivas, R. T. M. de Rosales, N. H. Williams, J. Am.
Chem. Soc. 2005, 127, 13470–13471.
[13] G. Feng, D. Natale, R. Prabaharan, J. C. Mareque-Rivas, N. H. Williams,
Angew. Chem. Int. Ed. 2006, 45, 7056–7059; Angew. Chem. 2006, 118,
7214–7217.
[14] a) J. Suh, S. H. Hong, J. Am. Chem. Soc. 1998, 120, 12545–12552; b) F.
Manea, F. B. Houillon, L. Pasquato, P. Scrimin, Angew. Chem. Int. Ed.
2004, 43, 6165–6169; Angew. Chem. 2004, 116, 6291–6295; c) F. Aveni-
er, J. B. Domingos, L. D. Van Vliet, F. Hollfelder, J. Am. Chem. Soc. 2007,
129, 7611–7619; d) F. Avenier, F. Hollfelder, Chem. Eur. J. 2009, 15,
12371–12380.
Theoretical studies
Quantum-chemical calculations were carried out with the Turbo-
mole 6.4 program.[35] Geometry optimizations were carried out at
the RI-DFT level of theory by employing the Perdew–Burke–Ernzer-
hof (PBE) functional[36] and the def2-SVP basis set.[37] Normal-mode
analyses (vibrational frequency calculations) were carried out at
the same level of theory. They were used to characterize (and con-
firm) the nature of transition states and to provide gas-phase ther-
mochemical data. Single-point energies were calculated by em-
ploying the PBE, PBE0,[38] B3LYP,[39] B3LYP-D,[40] and TPSSh[41] func-
tionals and Ahlrichs’ def2-TZVP basis set.[42] Another set of func-
tionals, presumably transition-state-barrier calibrated, included
mPW1K,[43] mPWB1K,[44] M06,[45] and wB97xD,[46] employed in con-
junction with the 6-311G+(2d,p) basis set. These single-point cal-
culations were carried out with the Gaussian 09 program.[47] Solva-
tion (free) energies of all studied species were calculated by the
COSMO-RS[31] method (conductor-like screening model for realistic
solvation) as implemented in the COSMOtherm program, by using
the BP_TZVP_C30_1201.ctd parametrization file. The geometries
were first optimized in water (e=80) by using the Becke–Perdew
(BP86) functional[39a,48] and the COSMO implicit solvation model.[49]
COSMO-RS calculations were performed according to the recom-
mended protocol, which includes RI-BP86/def-TZVP calculations
with e=1 (ideal conductor) and e=1 (vacuum) as a prerequisite
for final calculations in water. The Gibbs free energy was subse-
quently calculated as the sum of the following contributions
[Eq. (4)]:
G ¼ Eel þ Gsolv þ EZPVEꢀRT lnðqtransqrotqvibÞ þ pV
ð4Þ
[15] M. Diez-Castellnou, F. Mancin, P. Scrimin, J. Am. Chem. Soc. 2014, 136,
1158–1161.
[16] a) M. Oivanen, S. Kuusela, H. Lçnnberg, Chem. Rev. 1998, 98, 961–990;
b) T. Lçnnberg, H. Lçnnberg, Curr. Opin. Chem. Biol. 2005, 9, 665–673.
[17] H. Korhonen, T. Koivusalo, S. Toivola, S. Mikkola, Org. Biomol. Chem.
2013, 11, 8324–8339.
[18] R. S. Brown, Z.-L. Lu, C. T. Liu, W. Y. Tsang, D. R. Edwards, A. A. Neverov, J.
Phys. Org. Chem. 2010, 23, 1–15.
[19] a) L. Lain, H. Lçnnberg, T. A. Lçnnberg, Org. Biomol. Chem. 2015, 13,
3484–3492; b) I. S. Hong, J. Suh, Org. Lett. 2000, 2, 377–380.
[20] a) Y. Fan, Y. Q. Gao, J. Am. Chem. Soc. 2007, 129, 905–913; b) H. Gao, Z.
Ke, N. J. DeYonker, J. Wang, H. Xu, Z.-W. Mao, D. L. Phillips, C. Zhao, J.
Am. Chem. Soc. 2011, 133, 2904–2915; c) C. I. Maxwell, N. J. Mosey, R. S.
Brown, J. Am. Chem. Soc. 2013, 135, 17209–17222; d) R. Bonomi, G.
Saielli, P. Scrimin, F. Mancin, Supramol. Chem. 2013, 25, 665–671; e) X.
Zhang, X. Zheng, D. L. Phillips, C. Zhao, Dalton Trans. 2014, 43, 16289–
16299; f) X. Zhang, Y. Zhu, H. Gao, C. Zhao, Inorg. Chem. 2014, 53,
11903–11912.
where Eel is the single-point energy in vacuo, EZPVE the zero-point
vibrational energy, Gsolv the COSMO-RS solvation energy, and
RT(lnqtransqvibqrot) accounts for the change in entropic terms and in
the thermal correction to the enthalpy, obtained from the harmon-
ic vibrational frequencies by the ideal-gas, rigid-rotor, harmonic-os-
cillator approximation at T=298.15 K.
Acknowledgements
Financial support from specific university research (MSMT No
20/2015), the Academy of Sciences of the Czech Republic (RVO
61388963), and the Czech Science Foundation (14-31419S, 14-
03636S) is gratefully acknowledged.
[21] M.-Y. Yang, O. Iranzo, J. P. Richard, J. R. Morrow, J. Am. Chem. Soc. 2005,
127, 1064–1065.
Chem. Eur. J. 2016, 22, 1 – 13
11
ꢂ 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
&
&
These are not the final page numbers! ÞÞ