806
S. Y. HONG et al.
nomenclature for the proteins and the protein domains of
the bacterial phosphoenolpyruvate: sugar phosphotrans-
ferase system. J. Bacteriol., 174, 1433–1438 (1992).
15) Park, Y. W., Lim, S. T., and Yun, H. D., Cloning and
characterization of a CMCase gene, celB, of Erwinia
carotovra subsp. carotovora LY34 and its comparison to
celA. Mol. Cells, 8, 280–285 (1998).
16) An, C. L., Lim, W. J., Hong, S. Y., Kim, E. J., Shin, E.
C., Kim, M. K., Lee, J. Y., Park, S. R., Woo, J. G., Lim,
Y. P., and Yun, H. D., Analysis of bgl operon structure
and characterization of ꢀ-glucosidase from Pectobacte-
rium carotovorum subsp. carotovorum LY34. Biosci.
Biotechnol. Biochem., 68, 2270–2278 (2004).
Acknowledgments
This work was supported by a grant from BioGreen
21 and ARPC (Ministry of Agriculture and Forestry of
Korea) and KRF (2005-042-F00013), Republic of
Korea. S.Y.H and C.L.A. are recipients of a BK21
fellowship from the Ministry of Education of Korea.
References
1) Beguin, P., Molecular biology of cellulose degradation.
Annu. Rev. Microbiol., 44, 219–248 (1990).
2) Spiridonov, N. A., and Wilson, D. B., Cloning and
biochemical characterization of BglC, a ꢀ-glucosidase
from the cellulolytic actinomycete Thermobifida fusca.
Curr. Microbiol., 42, 295–301 (2001).
3) Helfert, C., Gotsche, S., and Dahl, M. K., Cleavage of
trehalose-phosphate in Bacillus subtilis is catalyzed by a
phospho-ꢁ-(1,1)-glucosidase encoded by the treA gene.
Mol. Microbiol., 16, 111–120 (1995).
17) An, C. L., Lim, W. J., Hong, S. Y., Shin, E. C., Kim,
M. K., Lee, J. Y., Park, S. R., Woo, J. G., Lim, Y. P., and
Yun, H. D., Structural and biochemical analysis of the
asc operon encoding 6-phospho-ꢀ-glucosidase in Pecto-
bacterium carotovorum subsp. carotovorum LY34. Res.
Microbiol., 156, 145–153 (2005).
18) Sambrook, J., and Russell, D. W., Molecular cloning, a
laboratory manual, third ed., Cold Spring Harbor
Laboratory Press, Cold Spring Harbor (2001).
4) Park, S. R., Cho, S. J., Kim, M. K., Ryu, S. K., Lim, W.
J., An, C. L., Hong, S. Y., Kim, H., and Yun, H. D.,
Activity enhancement of Cel5Z from Pectobacterium
chrysanthemi PY35 by removing C-terminal region.
Biochem. Biophys. Res. Commun., 291, 425–430 (2002).
5) Raghunand, T. R., and Mahadevan, S., The ꢀ-glucoside
genes of Klebsiella aerogenes: conservation and diver-
gence in relation to the cryptic bgl genes of Escherichia
coli. FEMS Microbiol. Lett., 223, 267–274 (2003).
6) Wong, W. K. R., Ali, A., Chan, W. K., Ho, V., and Lee,
N. T. K., The cloning, expression and characterization of
a cellobiase gene encoding a secretary enzyme from
Cellulomonas biazotea. Gene, 207, 79–86 (1998).
7) Greenberg, D. B., Stulke, J., and Saier, M. H. Jr.,
Domain analysis of transcriptional regulators bearing
PTS regulatory domains. Res. Microbiol., 153, 519–526
(2002).
19) Wild, J., Hradecna, Z., and Szybalski, W., International
symposium on molecular biology of bacterial plasmids.
Plasmid, 45, 142 (2001).
20) Iwashita, K., Todoroki, K., Himura, H., Shimoi, H., and
Ito, K., Purification and characterization of extracellular
and cell wall bound ꢀ-glucosidases from Aspergillus
kawachii. Biosci. Biotechnol. Biochem., 62, 1938–1946
(1998).
21) Nagatomo, H., Matsushita, Y., Sugamoto, K., and
Matsui, T., Preparation and properties of gelatin-immo-
bilized ꢀ-glucosidase from Pyrococcus furiosus. Biosci.
Biotechnol. Biochem., 69, 128–136 (2005).
22) Kawai, R., Yoshida, M., Tani, T., Igarashi, K., Ohira, T.,
Nagasawa, H., and Samejima, M., Production and
characterization of recombinant Phanerochaete chryso-
sporium ꢀ-glucosidase in the methylotropic yeast Pichia
pastoris. Biosci. Biotechnol. Biochem., 67, 1–7 (2003).
23) Bata, J., and Gerbi, C., Glycoside hydrolase production
by an anaerobic rumen fungus Caecomyces communis.
Res. Microbiol., 148, 263–269 (1997).
8) Hu, K. Y., and Saier, M. H. Jr., Phylogeny of phosphoryl
transfer proteins of the phosphoenolpyruvate-dependent
sugar-transporting phosphotransferase system. Res. Mi-
crobiol., 153, 405–415 (2002).
9) Kotrba, P., Inui, M., and Yukawa, H., A single V317A
or V317M substitution in enzyme II of a newly identified
ꢀ-glucoside phosphotransferase and utilization system
of Corynebacterium glutamicum R extends its specificity
towards cellobiose. Microbiology, 149, 1569–1580
(2003).
10) Cote, C. K., and Honeyman, A. L., The LicT protein acts
as both a positive and a negative regulator of loci within
the bgl regulon of Streptococcus mutans. Microbiology,
149, 1333–1340 (2003).
11) Tobisch, S., Stulke, J., and Hecker, M., Regulation of
the lic operon of Bacillus subtilis and characterization of
potential phosphorylation sites of the LicR regulator
protein by site-directed mutagenesis. J. Bacteriol., 181,
4995–5003 (1999).
12) Warner, J. B., and Lolkema, J. S., A Crh-specific
function in carbon catabolite repression in Bacilus
subtilis. FEMS Microbiol. Lett., 220, 277–280 (2003).
13) Saier, M. H. Jr., Families of transmembrane sugar
transport proteins. Mol. Microbiol., 35, 699–710 (2000).
14) Saier, M. H. Jr., and Reizer, J., Proposed uniform
24) Svasti, J., Phongsak, T., and Sarnthima, R., Transgluco-
sylation of tertiary alcohols using cassava ꢀ-glucosidase.
Biochem. Biophys. Res. Commun., 305, 470–475 (2003).
25) Marasco, R., Muscariello, L., Varcamonti, M., De
Felice, M., and Sacco, M., Expression of the bglH gene
of Lactobasillus plantarum is controlled by carbon
catabolite repression. J. Bacteriol., 180, 3400–3404
(1998).
26) Schaefler, S., Inducible system for the utilization of ꢀ-
glucosides in Escherichia coli. I. Active transport and
utilization of ꢀ-glucosides. J. Bacteriol., 93, 254–263
(1967).
27) Marques, A. R., Coutinho, P. M., Videira, P., Fialho,
A. M., and Sa-Correia, I., Sphingomonas paucimobilis
beta-glucosidase Bgl1: a member of a new bacterial
subfamily in glycoside hydrolase family 1. Biochem. J.,
370, 793–804 (2003).
28) Thompson, J., Robrish, S. A., Bouma, C. L., Freedberg,
D. I., and Folk, J. E., Phospho-ꢀ-glucosidase from
Fusobacterium mortiferum: purification, cloning, and
inactivation by 6-phosphoglucono-ꢃ-lactone. J. Bacter-