218
SRINIVAS ET AL.
negative entropy values probably indicate the impor-
tance of greater solvation in the transition state.
22. (a) Ri, T.; Eyring, H. J Chem Phys 1940, 8, 433;
(b) Walden, P. Angew Chem 1924, 37, 390.
23. (a) Cox, E. G.; Jeffery, G. A.; Truter, M. R. Nature 1948,
162, 258; (b) Grison, E.; Ericks, K.; de Vries, J. L. Acta
Cryst 1950, 3, 290; (c) Goddard, D. R.; Hughes, E. D.;
Ingold, C. K. J Chem Soc 1950, 1, 2559.
BIBLIOGRAPHY
1. Woodward, J. Philos Trans 1724, 33, 15–17.
2. (a) Dunbar, K. R.; Heintz, R. A. Prog Inorg Chem
1997, 45, 283; (b) Shatruk, M.; Dragulescu-Andrasi,
A.; Chambers, K. E.; Stoian, S. A.; Bominaar, E. L.;
Catalina Achim, C.; Kim, R.; Dunbar, K. E. J Am Chem
Soc 2007, 129, 6104–6116.
3. Robin, M. B. Inorg Chem 1962, 1, 337–342.
4. Sano, H.; Hashimoto, F. Bull Chem Soc Jpn 1965, 38,
684–685.
24. (a) Gillespie, R. J.; Graham, J.; Hughes, E. D.; Ingold,
C. K.; Peeling, E. R. Nature 1946, 158, 480; (b) Gille-
spie, R. J.; Millen, D. J. Q Rev (London) 1948, 2, 277.
25. Chedin, J. Ann Chim 1937, 8, 295.
26. Olah, G. A.; Kuhn, S. J.; Flood, S. H. J Am Chem Soc
1961, 83, 4581–4585 and references cited there in.
27. (a) Ingold, C. K.; Hughes, E. D.; Reed, R. I. Nature
1946, 158, 448; (b) Halberstadt, E. S.; Hughes, E. D.;
Ingold, C. K. Nature 1946, 158, 514; (c) Halberstadt,
E. S.; Hughes, E. D.; Ingold, C. K. J Chem Soc 1950,
2441.
5. Walker, R. G.; Watkins, K. O. Inorg Chem 1968, 7,
885–888.
6. Ito, A.; Suenaga, M.; Ono, K. J Chem Phys 1968, 48,
3597–3599.
28. Martinsen, H. Z Phys Chem 1904, 50, 385; 1907, 59,
605.
7. Mayoh, B.; Day, P. J Chem Soc, Dalton Trans 1976,
1483–1486.
8. Balmaseda, J.; Reguera, E.; Fernandez, J.; Gordillo, A.;
Yee-Madeira, H. J. Phys Chem Solids 2003, 64, 685.
9. Reguera, E.; Fernandez, J.; Duque J. Polyhedron 1994,
13, 479.
10. Balmaseda, J.; Reguera, E.; Gomez, A.; Diaz, B.; Autie,
M. Microporous Mesoporous Mater 2002, 54, 285.
11. Wenker, D.; Spiess, B.; Laugel, P.; Lapp, C. Food Addit
Contam 1989, 6, 351.
12. Neff, V. D. J Electrochem Soc 1985, 132, 1382.
13. (a) DeBerry, D. W.; Viehbeck, A. J Electrochem Soc
1983, 130, 249; (b) Gadet, V.; Mallah, T.; Castro, I.;
Verdaguer, M. J Am Chem Soc 1992, 114, 9213.
14. Uyanik, G.; Pekin, B. J Catal 1970, 19, 195–203.
15. Srinivas, P.; Rajanna, K. C.; Krishnaiah, G.; Satish
Kumar, M.; Narender Reddy, J. Synth React Inorg Met-
Org Nano-Met Chem 2014, 44, 1212–1220.
16. Liang, Y.; Yi, C.; Tricard, S.; Fang, J.; Zhao, J.; Shen,
W. RSC Adv 2015, 5, 17993–17999.
17. Pintado, S.; Goberna-Ferro´n, S.; Escudero-Ada´n, E. C.;
Gala´n-Mascaro´s, J. R. J Am Chem Soc 2013, 135,
13270–13273.
18. Adhikamsetty, R. K.; Jonnalagadda, S. B. Bull Chem
Soc Ethiop 2009, 23, 47–54.
19. (a) Booth, G. In Ullmann’s Encyclopedia of Industrial
Chemistry; Wiley-VCH: Weinheim, Germany 2005;
(b) Olah, G. A.; Malhotra, R.; Narang, S. C. Nitration
Methods and Mechanisms (Organic Nitro Chemistry Se-
ries), Vol. A17; VCH: New York, 1989, p. 411–455
(1991).
20. (a) Hoggett, J. G.; Monodie, R. B.; Penton, J. R.;
Schofield, K. Nitration and Aromatic Reactivity; Cam-
bridge University Press: London (UK), 1971; (b) Ono,
N. The Nitro Group in Organic Synthesis; Wiley-VCH:
New York, 2001.
29. Kecki, Z. Tetrahedron 1961, 12, 23.
30. Miller, R. C.; Noyce, D. S.; Vermeulen, T. Ind Eng Chem
1964, 56, 43.
31. Amol, A.; Kulkarni, B. J Org Chem 2014, 10, 405.
32. (a) Ramesh, K.; Shylaja, S.; Rajanna, K. C.; Giridhar
Reddy, P.; Saiprakash, P. K. Adv Phys Chem 2013,
146585; (b) Int J Chem Kinet 2014, 46, 126.
33. Satish Kumar, M.; Rajanna, K. C.; Venkateswarlu, M.;
Lakshman Rao, K. Int J Chem Kinet 2016, 48, 171–196.
34. Srinivas, P.; Rajanna, K. C.; Satish Kumar, M.;
Rajendar Reddy, K. Synth React Inorg Metal-Org Nano-
Met Chem 2014, 44, 364.
35. (a) Glasstone, S.; Laidier, K. J.; Eyring, H. Theory
of Rate Processes; McGraw-Hil: New York, 1961;
(b) Laidler, K. J. Chemical Kinetics; Pearson Educa-
tion: Singapore, 2004.
36. Christian, R. Solvents and Solvent Effects in Organic
Chemistry; Wiley-VCH: Weinheim, Germany, 2003.
37. Robinson, R. A.; Stokes, R. H. Electrolyte Solutions;
Butterworths Scientific Publications: London, 1955.
38. Brown, D. A.; Hudson, R. F. J Chem Soc 1953, 883.
39. (a) Amis, E. S. Solvent Effects on Reaction Rates
and Mechanisms; Academic Press: London, 1964;
(b) Kirkwood, J. G. J Chem Phys 1924, 2, 251.
40. (a) Ingold, C. K. Structure and Mechanism in Organic
Chemistry; Bell: London, 1953; (b) Hughes, E. D.; In-
gold, C. K. J Chem Soc 1935, 244.
41. Shorter, J. Correlation Analysis in Organic Chem-
istry: Introduction to Linear Free-energy Relationships;
Clarendon Press: Oxford, UK, 1973, pp. 70.
42. Basolo, F.; Pearson, R. G. Mechanisms of Inorganic
Reactions—A Study of Metal Complexes in Solution,
2nd ed.; Wiley : New York, 1967.
43. (a) Hammett, L. P. Physical Organic Chemistry;
Mc-Graw-Hill: New York, 1940; (b) Wiberg, K. B. Phys-
ical Organic Chemistry; Wiley: New York, 1964.
44. Exner, O. Coll Czech Chem Commun 1955, 29, 1094.
45. (a) Petersen, J. R. C. J Org Chem 1964, 29, 3133;
(b) Liu, L.; Guo, Q. X. Chem Rev 2001, 101, 673–693;
(c) Cornish-Bowden, A. J Biosci 2002, 27, 121–126.
21. (a) Olah, G. A.; Kuhn, S. J. Org Synth Coll 1973, 5, 480;
(b) Olah, G. A.; Kuhn, S. J. Org Synth Coll 1967, 47,
56; (c) Surya Prakash, G. K.; Mathew, T. Angew Chem,
Int 2010, 49, 1726.
International Journal of Chemical Kinetics DOI 10.1002/kin.21068