Journal of the American Chemical Society
Article
Z.; Zhu, H.; Zhu, C.; Suenaga, K.; Oleynikov, P.; Alshammari, A. S.;
Zhang, X.; Terasaki, O.; Yaghi, O. M. Science 2016, 351, 365.
G.; Sheberla, D.; Liu, S. F.; Swager, T. M.; Dinca,
Ed. 2015, 54, 4349.
̆
M. Angew. Chem., Int.
(
3) Kandambeth, S.; Mallick, A.; Lukose, B.; Mane, M. V.; Heine, T.;
Banerjee, R. J. Am. Chem. Soc. 2012, 134, 19524.
4) Guo, J.; Xu, Y.; Jin, S.; Chen, L.; Kaji, T.; Honsho, Y.; Addicoat,
(24) (a) Riadi, Y.; Mamouni, R.; Azzalou, R.; Haddad, M. E.; Routier,
S.; Guillaumet, G.; Lazar, S. Tetrahedron Lett. 2011, 52, 3492. (b) Cho,
Y. H.; Lee, C.-Y.; Ha, D.-C.; Cheon, C.-H. Adv. Synth. Catal. 2012,
354, 2992. (c) Yang, D.; Yan, K.; Wei, W.; Tian, L.; Shuai, Y.; Li, R.;
You, J.; Wang, H. Asian J. Org. Chem. 2014, 3, 969. (d) Bala, M.;
Verma, P. K.; Sharma, D.; Kumar, N.; Singh, B. Mol. Diversity 2015, 19,
263. (e) Kondo, T.; Yang, S.; Huh, K.-T.; Kobayashi, M.; Kotachi, S.;
Watanabe, Y. Chem. Lett. 1991, 20, 1275. (f) Blacker, A. J.; Farah, M.
M.; Hall, M. I.; Marsden, S. P.; Saidi, O.; Williams, J. M. J. Org. Lett.
2009, 11, 2039. (g) Khalafi-Nezhad, A.; Panahi, F. ACS Catal. 2014, 4,
1686.
(
M. A.; Kim, J.; Saeki, A.; Ihee, H.; Seki, S.; Irle, S.; Hiramoto, M.; Gao,
J.; Jiang, D. Nat. Commun. 2013, 4, 2736.
(
(
5) Xu, H.; Gao, J.; Jiang, D. Nat. Chem. 2015, 7, 905.
6) Waller, P. J.; Lyle, S. J.; Osborn Popp, T. M.; Diercks, C. S.;
Reimer, J. A.; Yaghi, O. M. J. Am. Chem. Soc. 2016, 138, 15519.
7) During the course of this research, the McGrier group elegantly
(
synthesized benzobisoxazole-linked BBO-COF-1 and BBO-COF-2 via
a cyanide-catalyzed two-step approach. The molecular unit of BBO-
COF-1 is identical to that of LZU-190, although the synthetic strategy
and characterization data showed differences. No photocatalytic
application was explored in their report. For details, see: Pyles, D.
A.; Crowe, J. W.; Baldwin, L. A.; McGrier, P. L. ACS Macro Lett. 2016,
(25) (a) Tietze, L. F.; Beifuss, U. Angew. Chem., Int. Ed. Engl. 1993,
32, 131. (b) Catalytic Cascade Reactions; Xu, P.-F., Wang, W., Eds.;
Wiley: Hoboken, NJ, 2013.
(26) So, Y.-H.; Zaleski, J. M.; Murlick, C.; Ellaboudy, A.
5
(
, 1055.
8) Du, Y.; Yang, H.; Whiteley, J. M.; Wan, S.; Jin, Y.; Lee, S.-H.;
Zhang, W. Angew. Chem., Int. Ed. 2016, 55, 1737.
9) Rao, M. R.; Fang, Y.; De Feyter, S.; Perepichka, D. F. J. Am.
Chem. Soc. 2017, 139, 2421.
10) (a) Zhuang, X.; Zhao, W.; Zhang, F.; Cao, Y.; Liu, F.; Bi, S.;
Macromolecules 1996, 29, 2783.
(27) (a) Birks, J. B. Photophysics of Aromatic Molecules; Wiley:
London, 1970. (b) Turro, N. J.; Ramamurthy, V.; Scaiano, J. C.
Modern Molecular Photochemistry of Organic Molecules; University
Science Books: Sausalito, CA, 2012. (c) Romero, N. A.; Nicewicz, D.
A. Chem. Rev. 2016, 116, 10075.
(
(
Feng, X. Polym. Chem. 2016, 7, 4176. (b) Jin, E.; Asada, M.; Xu, Q.;
Dalapati, S.; Addicoat, M. A.; Brady, M. A.; Xu, H.; Nakamura, T.;
Heine, T.; Chen, Q.; Jiang, D. Science 2017, 357, 673.
(28) Liu, Q.; Wu, L.-Z. Nat. Sci. Rev. 2017, 4, 359.
(29) (a) Fukumaru, T.; Fujigaya, T.; Nakashima, N. Macromolecules
2012, 45, 4247. (b) Patel, H. A.; Ko, D.; Yavuz, C. T. Chem. Mater.
2014, 26, 6729. (c) Xu, L.; Cao, L.; Guo, Z.; Zha, Z.; Lei, S. Chem.
Commun. 2015, 51, 8664.
(
11) (a) Kuhn, P.; Antonietti, M.; Thomas, A. Angew. Chem., Int. Ed.
008, 47, 3450. (b) Wang, K.; Yang, L.-M.; Wang, X.; Guo, L.; Cheng,
G.; Zhang, C.; Jin, S.; Tan, B.; Cooper, A. Angew. Chem., Int. Ed. 2017,
6, 14149.
12) (a) Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.;
2
(30) It would be most feasible to verify the formation of benzoxazole
1
5
(
rings by the absence of the protons in −NC−O− in the H MAS
1
1
NMR spectrum. However, the strong H− H homonuclear dipolar
1
Eddaoudi, M.; Kim, J. Nature 2003, 423, 705. (b) O’Keeffe, M.;
Peskov, M. A.; Ramsden, S. J.; Yaghi, O. M. Acc. Chem. Res. 2008, 41,
or even featureless line shape (Figure S8). This is the reason that we
applied the sophisticated 13C NQS MAS NMR technique to resolve
this key issue.
1
(
782.
13) (a) Rowan, S. J.; Cantrill, S. J.; Cousins, G. R. L.; Sanders, J. K.
M.; Stoddart, J. F. Angew. Chem., Int. Ed. 2002, 41, 898. (b) Corbett, P.
T.; Leclaire, J.; Vial, L.; West, K. R.; Wietor, J.-L.; Sanders, J. K. M.;
Otto, S. Chem. Rev. 2006, 106, 3652. (c) Jin, Y.; Yu, C.; Denman, R. J.;
Zhang, W. Chem. Soc. Rev. 2013, 42, 6634.
(31) Klessinger, M.; Michl, J. Excited States in Photochemistry of
Organic Molecules; VCH: New York, 1995.
(32) For examples of metal-free photocatalysis by organic polymers,
see: (a) Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.;
Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8, 76.
(
14) Li, L.-H.; Feng, X.-L.; Cui, X.-H.; Ma, Y.-X.; Ding, S.-Y.; Wang,
W. J. Am. Chem. Soc. 2017, 139, 6042.
15) (a) Special issue: Photoredox Catalysis in Organic Chemistry .
̈
(b) Su, F.; Mathew, S. C.; Mohlmann, L.; Antonietti, M.; Wang, X.;
(
Blechert, S. Angew. Chem., Int. Ed. 2011, 50, 657. (c) Kang, N.; Park, J.
H.; Ko, K. C.; Chun, J.; Kim, E.; Shin, H.-W.; Lee, S. M.; Kim, H. J.;
Ahn, T. K.; Lee, J. Y.; Son, S. U. Angew. Chem., Int. Ed. 2013, 52, 6228.
(d) Sprick, R. S.; Bonillo, B.; Clowes, R.; Guiglion, P.; Brownbill, N. J.;
Slater, B. J.; Blanc, F.; Zwijnenburg, M. A.; Adams, D. J.; Cooper, A. I.
Angew. Chem., Int. Ed. 2016, 55, 1792. (e) Zhang, G.; Lan, Z.-A.;
Wang, X. Angew. Chem., Int. Ed. 2016, 55, 15712. (f) Wang, L.; Wan,
Y.; Ding, Y.; Wu, S.; Zhang, Y.; Zhang, X.; Zhang, G.; Xiong, Y.; Wu,
X.; Yang, J.; Xu, H. Adv. Mater. 2017, 29, 1702428.
Acc. Chem. Res. 2016, 49, 2261−2327. (b) Special issue: Photo-
chemistry in Organic Synthesis . Chem. Rev. 2016, 116, 9629−10342.
(
16) Chen, L.; Furukawa, K.; Gao, J.; Nagai, A.; Nakamura, T.; Dong,
Y.; Jiang, D. J. Am. Chem. Soc. 2014, 136, 9806.
17) (a) Vyas, V. S.; Haase, F.; Stegbauer, L.; Savasci, G.; Podjaski, F.;
Ochsenfeld, C.; Lotsch, B. V. Nat. Commun. 2015, 6, 8508.
b) Banerjee, T.; Haase, F.; Savasci, G.; Gottschling, K.; Ochsenfeld,
C.; Lotsch, B. V. J. Am. Chem. Soc. 2017, 139, 16228.
18) (a) Wang, H.-Z. M.S. Thesis, Lanzhou University, Lanzhou,
China, 2014. (b) Chinese Patent Application 201410010008.6, 2014.
19) Liu, W.; Su, Q.; Ju, P.; Guo, B.; Zhou, H.; Li, G.; Wu, Q.
ChemSusChem 2017, 10, 664.
20) Lin, G.; Ding, H.; Chen, R.; Peng, Z.; Wang, B.; Wang, C. J. Am.
Chem. Soc. 2017, 139, 8705.
21) Zhi, Y.; Li, Z.; Feng, X.; Xia, H.; Zhang, Y.; Shi, Z.; Mu, Y.; Liu,
X. J. Mater. Chem. A 2017, 5, 22933.
22) Pachfule, P.; Acharjya, A.; Roeser, J.; Langenhahn, T.; Schwarze,
M.; Schomacker, R.; Thomas, A.; Schmidt, J. J. Am. Chem. Soc. 2018,
40, 1423.
23) (a) Hmadeh, M.; Lu, Z.; Liu, Z.; Gan
(
(
(
(33) (a) Zou, Y.-Q.; Chen, J.-R.; Liu, X.-P.; Lu, L.-Q.; Davis, R. L.;
Jørgensen, K. A.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 784.
(b) Pitre, S. P.; McTiernan, C. D.; Ismaili, H.; Scaiano, J. C. J. Am.
Chem. Soc. 2013, 135, 13286. (c) Hatamifard, A.; Nasrollahzadeh, M.;
Sajadi, S. M. New J. Chem. 2016, 40, 2501. (d) Sawant, S. D.;
Hudwekar, A. D.; Aravinda Kumar, K. A.; Venkateswarlu, V.; Singh, P.
P.; Vishwakarma, R. A. Tetrahedron Lett. 2014, 55, 811. (e) Yu, X.;
Cohen, S. M. Chem. Commun. 2015, 51, 9880. (f) Toyao, T.; Ueno,
N.; Miyahara, K.; Matsui, Y.; Kim, T.-H.; Horiuchi, Y.; Ikeda, H.;
Matsuoka, M. Chem. Commun. 2015, 51, 16103. (g) Luo, J.; Zhang, X.;
Zhang, J. ACS Catal. 2015, 5, 2250. (h) Paul, A.; Chatterjee, D.;
Rajkamal; Halder, T.; Banerjee, S.; Yadav, S. Tetrahedron Lett. 2015,
56, 2496. (i) Xie, H.-Y.; Han, L.-S.; Huang, S.; Lei, X.; Cheng, Y.;
Zhao, W.; Sun, H.; Wen, X.; Xu, Q.-L. J. Org. Chem. 2017, 82, 5236.
(34) Chandra, S.; Roy Chowdhury, D.; Addicoat, M.; Heine, T.; Paul,
A.; Banerjee, R. Chem. Mater. 2017, 29, 2074.
(
(
(
(
̈
1
(
́
dara, F.; Furukawa, H.;
Wan, S.; Augustyn, V.; Chang, R.; Liao, L.; Zhou, F.; Perre, E.;
Ozolins, V.; Suenaga, K.; Duan, X.; Dunn, B.; Yamamto, Y.; Terasaki,
O.; Yaghi, O. M. Chem. Mater. 2012, 24, 3511. (b) Kambe, T.;
Sakamoto, R.; Kusamoto, T.; Pal, T.; Fukui, N.; Hoshiko, K.;
Shimojima, T.; Wang, Z.; Hirahara, T.; Ishizaka, K.; Hasegawa, S.; Liu,
F.; Nishihara, H. J. Am. Chem. Soc. 2014, 136, 14357. (c) Campbell, M.
(35) The electron density of the aryl precursors bearing an electron-
donating substituent is relatively high, hindering the attack by a
H
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX