that can form a 1:1 complex with α-Chy in solution. After this
1:1 binding, α-Chy enzymatic activity was strongly inhibited
(97% of the original activity was suppressed; Table 3). In our
previous study on the poly(AM/DAAM)/ADH fibermat, α-Chy
encapsulation in the fibermat protected the original α-Chy
activity by 68%; inclusion of α-Chy in the network structure of
poly(AM/DAAM)/ADH hindered the TCI approach, but a
certain level of TCI binding and the subsequent inhibition still
remained.15 By comparison, in the case of the core-shell
fibermats, only 6% of the original enzymatic activity of α-Chy
was inhibited. The double-layered fibrous structure of the core-
shell fibermats, consisting of the PCL shell and the network
structure of poly(AM/DAAM)/ADH, provided clearly superior
protection of α-Chy against TCI binding. This type of protection
of the biological functions of proteins against the effects of
middle- or high-MW molecules (>1 kDa) is likely to be a general
behavior encountered when using the core-shell fibermats.
Additional optimization of fibermat nanostructure and selection
of polymer species can potentially further enhance the
performance of these fibermats relative to that demonstrated for
protein-encapsulating single-layered fibermats.
3.
4.
5.
6.
M. G. Lancina III, R. K. Shankar, H. Yang, J Biomed
Mater Res A. 2017, 105, 1252-1259.
Y. Dai, J. Niu, J. Liu, L. Yin, J. Xu, Bioresour. Techol.
2010, 101, 8942-8947.
,
H. Qi, P. Hu, J. Xu, A. Wang, Biomacromolecules 2006, 7
2327-2330.
M. Monfared, S. Taghizadeh, A. Z.-Hoseinabadi, S. M.
Mousavi, S. A. Hashemi, S. Ranjbar, A. M. Amani, Drug
Metab. Rev. 2019, 51, 589-611.
7.
8.
9.
S. Zupančič, Acta Pharm. 2019, 69, 131-153.
Y. Yang, X. Li, W. Cui, S. Zhou, R. Tan, C. Wang, J
Biomed Mater Res A. 2008, 86, 374-85.
G. Ren, X. Xu, Q. Liu, J. Cheng, X. Yuan, Y. Wan, React.
Funct. Polym. 2006, 66, 1559-1564.
10. H. Bang, K. Watanabe, R. Nakashima, W. Kai, K.-H. Song,
J. S. Lee, M. Gopiraman, I.-K. Kim, RSC Advances 2014,
4, 59571-59578.
11. P. Gupta, S. Trenor, T. E. Long, G. L. Wilkes,
Macromolecules 2004, 37, 9211-9218.
12. M. Kurecic, T. Mohan, N. Virant, U. Maver, J. Stergar, L.
Gradisnik, K. S. Kleinschek, S. Hribernik, RSC Advances
2019, 9, 21288-21301.
13. S. Koeda, K. Ichiki, N. Iwanaga, K. Mizuno, M. Shibata,
A. Obata, T. Kasuga, T. Mizuno, Langmuir 2016, 32, 221–
229.
14. K. Mizuno, S. Koeda, A. Obata, J. Sumaoka, T. Kasuga, J.
R. Jones, T. Mizuno, Langmuir 2017, 33, 4028-4035.
15. Y. Ido, A. L. B. Maçon, M. Iguchi, Y. Ozeki, S. Koeda, A.
Obata, T. Kasuga, T. Mizuno, Polymer 2017, 132, 342-352.
16. Z. Sun, Z. E. Alexander, A. L. Yarin, J. H. Wendroff, A.
Greiner, Adv. Mater. 2003, 15, 1929-1932.
17. N. Han, P. A. Bradley, J. Johnson, K. S. Parikh, A. Hissong,
M. A. Calhoun, J. J. Lannutti, J. O. Winter, J. Biomater.
Sci. Polym. Ed. 2013, 24, 2018-2030.
18. S. Srouji, D. Ben-David, R. Lotan, E. Livne, R. Avrahami,
E. Zussman, Tissue Eng. A 2011,17, 269-277.
19. C. L. McCormick, A. B. Lowe, Acc. Chem. Res. 2004, 37,
312-325.
20. Y. Birk, Int. J. Pept. Protein Res. 1985, 2, 113-131.
21. T. Zor, Z. Selinger, Anal. Biochem. 1996, 236, 302-308.
22. T. C. McIlvaine, J. Biol. Chem. 1921, 49, 183-186.
23. A. E. Beg, J. Chem. Soc. Pak. 1984, 6, 55-61.
24. Y. Zhang, Z.-M. Huang, X. Xu, C. T. Lim, S. Ramakrishna,
Chem. Mater. 2004, 16, 3406-3409.
25. N. Han, J. K. Johnson, P. A. Bradley, K. S. Parikh, J. J.
Lannutti, J. O. Winter, J. Funct. Biomater. 2012, 3, 497-
513.
26. P. Wen, Y. Wen, X. Huang, M. H. Zong, H. Wu, J. Agric
Food Chem. 2017, 65, 4786-4796.
27. T. Elzein, M. Nasser-Eddine, C. Delaite, S. Bistac, P.
Dumas. J. Colloid Interf. Sci. 2004, 273, 381–387.
28. J. D. Pédelacq, S. Cabantous, T. Tran T. C. Terwilliger, G.
S. Waldo, Nat. Biotechnol. 2006, 24, 79-88.
4. Conclusion
In this study, we characterized enzyme-encapsulating core-
shell fibermats in which enzyme molecules (of α-Chy or Lac)
were included in the core unit of poly(AM/DAAM)/ADH and a
PCL layer was wrapped around this core unit. Distinct from the
enzyme-encapsulating
poly(AM/DAAM)/ADH
fibermat
composed of only the poly(AM/DAAM)/ADH layer including
enzyme molecules, the core-shell fibermat exhibited sufficient
mechanical strength and stability of the stacked nanofibrous
structure in a neutral-pH buffer, with both of these characteristics
originating from the hydrophobic shell unit of PCL. Furthermore,
the thin PCL wrapping (<150 nm thick) of the
poly(AM/DAAM)/ADH layer did not markedly impede the
permeation of low-MW substrates. Thus, the enzyme -
encapsulating core-shell fibermats functioned effectively in
allowing entry of low-MW substrates while concurrently
suppressing the adverse impact of middle- or high-MW (>1 kDa)
contaminating molecules such as inhibitor peptides and
proteases; the apparent enzymatic activities of α-Chy-
encapsulating and Lac-encapsulating fibermats reached 81% and
70%, respectively, relative to activities of the same amounts of
the enzymes dissolved in buffer. These results imply that core-
shell fibermats of poly(AM/DAAM)/ADH (core unit) and
PCL or other hydrophobic polymers (shell unit) could emerge as
a novel class of enzyme-immobilizing platforms. Our group is
now comprehensively evaluating enzyme-encapsulating core-
shell fibermats generated using distinct combinations of
polymers.
Acknowledgement
29. J. N. Brantley, C. B. Bailey, J. R. Cannon, K. A. Clark, D.
A. Vanden Bout, J. S. Brodbelt, A. T. Keatinge-Clay, C.
W. Bielawski, Angew. Chem. Int. Ed. 2014, 53, 5088-5092.
30. F. J. Kezdy, M. L. Bender, Biochemistry 1962, 1, 1097-
1106.
31. M. M. Maksimainena, A. Lampio, M. Mertanen, O.
Turunen, J. Rouvinen,, Int. J. Biol. Biomacromol. 2013, 60,
109-115.
This work was supported by JSPS KAKENHI (Grant
Number 17K05932), and the TOYOAKI SCHLORSHIP
FOUNDATION, and the NIMS Molecule & Material Synthesis
Platform in the “Nanotechnology Platform Project” operated by
the Ministry of Education, Culture, Sports, Science and
Technology (MEXT).
References
1.
R. Jayakumar, S. Nair, Ed. Biomedical Applications of
Polymeric Nanofibers; Springer: Berlin, Heidelberg,
Germany, 2012.
2.
L. Tian, M. P. Prabhakaran, X. Ding, D. Kai, S.
Ramakrishna, J. Mater. Sci.: Mater. Med. 2013, 24, 2577-
2587.
8