Mendeleev Commun., 2010, 20, 116–118
1
and 2. Surfactants with hydrophobic anions demonstrate a
O
O
different behaviour, namely, hydrolysis of phosphonate 2 is
accelerated by CTAT and APT micelles, while that of less hydro-
phobic substrate 1 is retarded by the APT micelles unless an
alkali excess is used. This deviation from the typical behaviour
of cationic surfactants is due to the decrease in the solution pH
with the APT concentration above the cmc.
H
S
OH
N
O
N
d
H
O
N
HOd
N
N
O
N
O
N
O
O
O
This work was supported by the Russian Foundation for
Basic Research (grant no. 07-03-00392-a).
S
N
O
N
References
1
2
3
4
J. H. Fendler, Acc. Chem. Res., 1980, 13, 7.
J. H. Fendler, Chem. Rev., 1987, 87, 877.
S. Mann, Angew. Chem. Int. Ed., 2008, 47, 2.
I. V. Berezin, K. Martinek and A. K. Yatsimirskii, Usp. Khim., 1973,
N
O
N
O
N
4
2, 1729 (Russ. Chem. Rev., 1973, 42, 787).
5
L. S. Romsted, in Micellization, Solubilization, and Microemulsions,
ed. K. L. Mittal, Plenum Press, New York–London, 1977, vol. 2, p. 509.
C. A. Bunton and G. Savelli, Adv. Phys. Chem., 1986, 22, 213.
K. Holmberg, Curr. Opin. Colloid Interface Sci., 2003, 8, 187.
T. Dwars, E. Paetzold and G. Oehme, Angew. Chem. Int. Ed., 2005, 44,
7174.
Scheme 2 Schematic representation of the structure of an APT micelle.
6
7
8
ions) are capable of compensating the abundant micellar charge
of APT similar to OH ions. Initially, the addition of sodium
bromide retarded the decrease in solution pH with the APT
concentration. Nevertheless, a further increase in the surfactant
concentration followed the acidification of the system. Probably,
9
M. N. Khan, Micellar Catalysis, ed. A. T. Hubbard, CRC Press, Boca
Raton, 2007.
L. Ya. Zakharova, A. B. Mirgorodskaya, E. P. Zhil’tsova, L. A. Kudryavtseva
and A. I. Konovalov, Izv. Akad. Nauk, Ser. Khim., 2004, 1331 (Russ. Chem.
Bull., Int. Ed., 2004, 53, 1385).
10
–
only such small hydrophilic ions as OH can easily overcome
the APT head steric barrier. Incidentally, a similar effect was
observed in the polyethyleneimine aqueous solutions in the
11 L. Ya. Zakharova, A. R. Ibragimova, F. G. Valeeva, A. V. Zakharov, A. R.
Mustafina, L. A. Kudryavtseva, H. E. Harlampidi and A. I. Konovalov,
Langmuir, 2007, 23, 3214.
1
1
presence of the multicharged lanthanum ions. The formation
of the lanthanum hydroxo complexes was also followed by the
deprotonation of water molecules and acidifying the system by
two units of pH. When hydrolysis was carried out at higher pH
or at a fixed [APT]/[OH] ratio, an effective catalysis occurred in
the case of both phosphonates (Figure 4). An almost two orders
of magnitude increase in kobs is observed.
1
2 L. Ya. Zakharova, A. R. Ibragimova, F. G. Valeeva, L. A. Kudryavtseva,
A. I. Konovalov, A. V. Zakharov, N. M. Selivanova, V. V. Osipova, M. V.
Strelkov and Yu. G. Galyametdinov, J. Phys. Chem. C, 2007, 111,
1
3839.
13 R. D. O’Brien, Toxic Phosphorus Esters, Academic Press, New York,
1960.
1
1
1
4 (a) F. H. Westheimer, Science, 1987, 235, 1173; (b) Y. C. Yang, J. A.
In conclusion, the catalytic effect of new dimeric pyrimidinic
surfactants towards basic hydrolysis of O-p-nitrophenyl-O-alkyl-
chloromethylphosphonates [alkyl = ethyl (1) or hexyl (2)] is
examined and compared with the rate effect of conventional
surfactants CTAB and CTAT with similar counterions. Both
CTAB and APB solutions accelerate hydrolyses of phosphonates
Bakker and J. R. Ward, Chem. Rev., 1992, 92, 1729.
5 D. F. Heath, Organophosphorus Poisons, Pergamon Press, New York,
1
961.
6 L. Ya. Zakharova, V. E. Semenov, M. A. Voronin, F. G. Valeeva, A. R.
Ibragimova, R. Kh. Giniatullin, A. V. Chernova, S. V. Kharlamov, L. A.
Kudryavtseva, Sh. K. Latypov, V. S. Reznik and A. I. Konovalov, J. Phys.
Chem. B, 2007, 111, 14152.
1
1
50
20
17 L. Ya. Zakharova, V. E. Semenov, M. A. Voronin, F. G. Valeeva, R. Kh.
Giniatullin, L. A. Kudryavtseva, V. S. Reznik and A. I. Konovalov,
Mendeleev Commun., 2008, 18, 158.
3
1
2
18 R. F. Hudson, Structure and Mechanism in Organo-Phosphorus Chemistry,
Academic Press, New York, 1965.
19 (a) W. P. Jencks, Catalysis in Chemistry and Enzymology, McGraw-
Hill, New York, 1969; (b) A. C. Hengge, Adv. Phys. Org. Chem., 2005,
8
7
6
5
4
9
6
3
0
0
2
4
0, 49.
20 W. W. Cleland and A. C. Hengge, Chem. Rev., 2006, 106, 3252.
2
1 L. Ya. Zakharova, V. V. Syakaev, M. A. Voronin, V. E. Semenov, F. G.
Valeeva, A. R. Ibragimova, A. V. Bilalov, R. Kh. Giniyatullin, S. K. Latypov,
V. S. Reznik and A. I. Konovalov, J. Colloid Interface Sci., 2010, 342,
0
0
0
.000 0.002 0.004 0.006
APT/mol dm–3
C
1
19.
0
.000
0.005
0.010
0.015
22 K. Bijma and J. B. F. N. Engberts, Langmuir, 1997, 13, 4843.
APT/mol dm–3
23 I. Chakraborty and S. P. Moulik, J. Phys. Chem. B, 2007, 111, 3658.
C
24 F. Talens-Alesson, J. Phys. Chem. B, 2009, 113, 9779.
Figure 4 Observed rate constants of hydrolyses of (1, 3) 1 and (2) 2 as
functions of the APT concentration; (1, 2) [APT]:[NaOH] = 1:2; (3) 1:3;
2
5 °C. Inset: observed rate constant of hydrolysis of 1 as function of the
–
3
APT concentration; [NaOH] = 0.01 mol dm ; 25 °C.
Received: 13th August 2009; Com. 09/3377
–
118 –