9224 J. Agric. Food Chem., Vol. 57, No. 19, 2009
Narita and Inouye
and 30 °C were reported to be 3 μM and 0.62 μM, respec-
(15) Pasero, L.; Mazzei-Pierron, Y.; Abadie, B.; Chicheportiche, Y.;
Marchis-Mouren, G. Complete amino acid sequence and location
of the five disulfide bridges in porcine pancreatic R-amylase. Bio-
chim. Biophys. Acta 1986, 869, 147–157.
0
i
tively (41). The K and K values of 5-CQA against PPA-I in the
i
hydrolysis of G -pNP are 0.23 ( 0.02 mM and 0.05 ( 0.01 mM,
2
respectively. Acarbose is a potent R-amylase inhibitor, and its
(
(
(
16) Marchis-Mouren, G.; Pasero, L. Isolation of two amylases in porcine
pancreas. Biochim. Biophys. Acta 1967, 140, 366–368.
17) Kluh, I. Amino acid sequence of hog pancreatic R-amylase iso-
enzyme I. FEBS Lett. 1981, 136, 231–234.
18) Meloun, B.; Kluh, I.; Moravek, L. Hog pancreatic R-amylase.
Peptides from tryptic digest of isoenzyme AII. Collect. Czech. Chem.
Commun. 1980, 45, 2572–2582.
inhibitory activity is 100 times stronger than that of 5-CQA.
5-CQA may not be applicable for therapeutic use in humans
because of its lower inhibitory activity in comparison with that
of acarbose, but ingestion of 5-CQA from processed foods
and beverages may be useful for the prevention of diabetes and
obesity and for the management of borderline diabetes in
patients.
(19) Al Kazaz, M.; Desseaux, V.; Marchis-Mouren, G.; Payan, F.;
Forest, E; Santimone, M. The mechanism of porcine pancreatic
R-amylase: Kinetic evidence for two additional carbohydrate bind-
ing sites. Eur. J. Biochem. 1996, 241, 787–796.
ACKNOWLEDGMENT
We thank Dr. Seunjae Lee (Kyoto University and presently
Samsung Everland, Ltd., Seoul) and R. Kimura and T. Fukunaga
(
20) Sakano, Y.; Takahashi, S.; Kobayashi, T. Purification and proper-
ties of two active components from crystalline preparation of porcine
pancreatic R-amylase. J. Jpn. Soc. Starch Sci. 1983, 30, 30–37.
21) Tormo, M. A.; Gil-Exojo, I.; Romero de Tejada, A.; Campillo, J. E.
White bean amylase inhibitor administered orally reduces glycemia
in type 2 diabetic rats. Br. J. Nutr. 2006, 96, 539–544.
(UCC Ueshima Coffee Co.) for their valuable advice and fruitful
comments.
(
LITERATURE CITED
(
1) Clifford, M. N.; Kazi, T. The influence of coffee bean maturity on the
content of chlorogenic acids, caffeine and trigonelline. Food Chem.
(22) Tsujita, T.; Yakaku, T.; Suzuki, T. Chestnut astringent skin extract,
an R-amylase inhibitor, retards carbohydrate absorption in rats and
humans. J. Nutr. Sci. Vitaminol. 2008, 54, 82–88.
1
987, 26, 59–69.
(
2) Clifford, M. N.; Knight, S.; Surucu, B.; Kuhnert, N. T. Characteri-
zation by LC-MSn of four new classes of chlorogenic acid in green
coffee beans: Dimethoxycinnamoylquinic acids, diferuloylquinic
acids, and feruloyl-dimethoxycinnamoylquinic acids. J. Agric. Food
Chem. 2006, 54, 1957–1969.
(23) Al Kazaz, M.; Desseaux, V.; Marchis-Mouren, G.; Prodanov, E.;
Santimone, M. The mechanism of porcine pancreatic R-amylase:
Inhibition of maltopentaose hydrolysis by acarbose, maltose and
maltotriose. Eur. J. Biochem. 1998, 252, 100–107.
(24) Oneda, H.; Lee, S.; Inouye, K. Inhibitory effect of 0.19 R-amylase
inhibitor from wheat kernel on the activity of porcine pancreas
R-amylase and its thermal stability. J. Biochem. 2004, 135, 421–427.
(25) Rohn, S.; Rawel, H. M.; Kroll, J. Inhibitory effects of plant phenols
on the activity of selected enzymes. J. Agric. Food Chem. 2002, 50,
3566–3571.
(26) Levitzki, A.; Steer, M. L. The allosteric activation of mammalian
alpha-amylase by chloride. Eur. J. Biochem. 1974, 41, 171–180.
(27) Yamashita, H.; Nakatani, H.; Tonomura, B. Substrate-selective
activation of histidine-modified porcine pancreatic R-amylase by
chloride ion. J. Biochem. 1991, 110, 605–607.
(
3) Clifford, M. N. Chlorogenic acids and other cinnamates:
Nature, occurrence and dietary burden. J. Sci. Food Agric. 1999,
7
9, 362–372.
(
4) Ky, C.-L.; Louarn, J.; Dussert, S.; Guyot, B.; Hamon, S.; Noirot, M.
Caffeine, trigonelline, chlorogenic acids and sucrose diversity in wild
Coffea arabica L. and C. canephora P. accessions. Food Chem. 2001,
7
5, 223–230.
(
(
5) IUPAC. Nomenclature of cyclitos. Biochem. J. 1976, 153, 23-31.
6) Takenaka, M.; Yan, X.; Ono, H.; Yoshida, M.; Nagata, T.;
Nakanishi, T. Caffeic acid derivatives in the roots of yacon
(
Smallanthus sonchifolius). J. Agric. Food Chem. 2003, 51, 793–796.
(28) Segel, I. H. Rapid Equilibrium Partial and Mixed-Type Inhibition.
In Enzyme Kinetics; John Wiley & Sons: New York, 1975; pp 161-226.
(29) Cornish-Bowden, A. A simple graphical method for determining the
inhibition constants of mixed, uncompetitive and non-competitive
inhibitors. Biochem. J. 1974, 137, 143–144.
(30) Inouye, K.; Lee, S.-B.; Tonomura, B. Effects of amino acid residues
at the cleavable site of substrates on the remarkable activation of
thermolysin by salts. Biochem. J. 1996, 315, 133–138.
(
(
7) Maruta, Y.; Kawabata, J.; Niki, R. Antioxidative caffeoylquinic
acid derivatives in the roots of burdock (Arctium lappa L.). J. Agric.
Food Chem. 1995, 43, 2592–2595.
8) Islam, M. S.; Yoshimoto, M.; Yahara, S.; Okuno, S.; Ishiguro, K.;
Yamakawa, O. Identification and characterization of foliar poly-
phenolic composition in sweetpotato (Ipomoea batatas L.) geno-
types. J. Agric. Food Chem. 2002, 50, 3718–3722.
(
9) Kono, Y.; Kobayashi, K.; Tagawa, S.; Adachi, K.; Ueda, A.; Sawa,
Y.; Shibata, H. Antioxidant activity of polyphenolics in diets: Rate
constants of reactions of chlorogenic acid and caffeic acid with
reactive species of oxygen and nitrogen. Biochim. Biophys. Acta 1997,
(31) Inouye, K.; Kuzuya, K.; Tonomura, B. A spectrophotometric study
on the interaction of thermolysin with chloride and bromide
ions, and the states of tryptophyl residue 115. J. Biochem. 1994,
116, 530–535.
1
335, 335–342.
(32) Muta, Y.; Inouye, K. Inhibitory effects of alcohols on thermolysin
activity as examined using a fluorescent substrate. J. Biochem. 2002,
132, 945–951.
(33) Oneda, H.; Inouye, K. Interactions of human matrix metalloprotei-
nase 7 (matrilysin) with the inhibitors thiorphan and R-94138.
J. Biochem. 2001, 129, 429–435.
(34) Komiyama, T.; Suda, H.; Aoyagi, T.; Takeuchi, T.; Umezawa, H.;
Fujimoto, K.; Umezawa, S. S. Studies on inhibitory effect of
phosphoramidon and its analogs on thermolysin. Arch. Biochem.
Biophys. 1975, 171, 727–731.
(
10) Jin, U.-H.; Lee, J.-Y.; Kang, S.-K.; Kim, J.-K.; Park, W.-H.; Kim,
J.-G.; Moon, S.-K.; Kim, A.-H. A phenolic compound, 5-caffeoyl-
quinic acid (chlorogenic acid), is a new type and strong matrix
metalloproteinase-9 inhibitor: Isolation and identification from
methanol extract of Euonymus alatus. Life Sci. 2005, 77, 2760–2769.
11) Iwai, K.; Kishimoto, N.; Kakino, Y.; Mochida, K.; Fujita, T. In vitro
antioxidative effects and tyrosinase inhibitory activities of seven
hydroxycinnamoyl derivatives in green coffee beans. J. Agric. Food
Chem. 2004, 52, 4893–4898.
(
(
(
(
12) Robyt, J. F.; French, D. The action pattern of porcine pancreatic
R-amylase in relationship to the substrate binding site of the enzyme.
J. Biol. Chem. 1970, 245, 3917–3927.
13) Nakamura, Y.; Ogawa, M.; Nishida, T.; Emi, M.; Kosaki, G.;
Himeno, S.; Matsubara, K. Sequences of cDNAs for human salivary
and pancreatic R-amylase. Gene 1984, 28, 263–270.
14) Nishida, T.; Nakamura, Y.; Mitsuru, E.; Yamamoto, T.; Ogawa, M.;
Mori, T.; Matsubara, K. Primary structure of human salivary
R-amylase gene. Gene 1986, 41, 299–304.
(35) Tronrud, D. E.; Monzingo, A. F.; Matthews, B. W. Crystallogra-
phic structural analysis of phosphoramidates as inhibitors and
transition-state analogs of thermolysin. Eur. J. Biochem. 1986, 157,
261–268.
(36) Cornish-Bowden, A. Inhibitors and Activators. In Principles of
Enzyme Kinetics; Butterworths: London, 1976; pp 52-70.
(37) Oneda, H.; Shiihara, M.; Inouye, K. Inhibitory effects of green tea
catechins on the activity of human matrix metalloproteinases 7
(matrilysin). J. Biochem. 2003, 133, 571–576.