10.1002/anie.202105830
Angewandte Chemie International Edition
RESEARCH ARTICLE
Keywords: biocatalysis • peptide • self-assembly • nano-superstructure • supramolecular chemistry
[1]
aF. H. Arnold, Nature 2001, 409, 253-257; bM. Frenkel-Pinter, M. Samanta, G. Ashkenasy, et al., Chemical Reviews 2020, 120, 4707-
4765.
[2]
[3]
C. M. Maupin, N. Castillo, S. Taraphder, et al., J. Am. Chem. Soc. 2011, 133, 6223-6234.
aS. Toba, G. Colombo, K. M. Merz, J. Am. Chem. Soc. 1999, 121, 2290-2302; bM. L. Zastrow, A. F. A. Peacock, J. A. Stuckey, et al.,
Nature Chemistry 2012, 4, 118-123; cW. J. Song, F. A. Tezcan, Science 2014, 346, 1525.
[4]
[5]
aC. Wang, J. Fei, K. Wang, et al., Angewandte Chemie International Edition 2020, 59, 18960-18963; bL. Huang, J. Chen, L. Gan, et
al., Science Advances 2019, 5, eaav5490; cD. Jiang, D. Ni, Z. T. Rosenkrans, et al., Chemical Society Reviews 2019, 48, 3683-3704;
dM. Liang, X. Yan, Accounts of Chemical Research 2019, 52, 2190-2200.
aJ. Wang, R. Huang, W. Qi, et al., Applied Catalysis B: Environmental 2019, 254, 452-462; bM. D. Nothling, A. Ganesan, K. Condic-
Jurkic, et al., Chem 2017, 2, 732-745; cJ. Chen, L. Huang, Q. Wang, et al., Nanoscale 2019, 11, 5960-5966; dW.-H. Chen, M.
Vázquez-González, A. Zoabi, et al., Nature Catalysis 2018, 1, 689-695; eA. P. Katsoulidis, K. S. Park, D. Antypov, et al., Angewandte
Chemie International Edition 2014, 53, 193-198; fQ. Liu, K. Wan, Y. Shang, et al., Nature Materials 2020.
aK. Tao, P. Makam, R. Aizen, et al., Science 2017, 358, eaam9756; bS. I. Stupp, L. C. Palmer, Chemistry of Materials 2014, 26, 507-
518; cS. Bolisetty, R. Mezzenga, Nat. Nanotechnol. 2016, 11, 365-371; dA. Lampel, S. A. McPhee, H.-A. Park, et al., Science 2017,
356, 1064; eB. Sun, K. Tao, Y. Jia, et al., Chemical Society Reviews 2019, 48, 4387-4400; fX. Li, J. Fei, Y. Xu, et al., Angewandte
Chemie 2018, 130, 1921-1925.
[6]
[7]
[8]
aR. P. Cheng, S. H. Gellman, W. F. DeGrado, Chem. Rev. 2001, 101, 3219; bW. F. DeGrado, Z. R. Wasserman, J. D. Lear, Science
1989, 243, 622.
aL. R. Marshall, O. Zozulia, Z. Lengyel-Zhand, et al., ACS Catal. 2019, 9, 9265-9275; bT. J. Moyer, J. A. Finbloom, F. Chen, et al., J.
Am. Chem. Soc. 2014, 136, 14746-14752; cA. Levin, T. A. Hakala, L. Schnaider, et al., Nature Reviews Chemistry 2020, 4, 615-634;
dT. P. J. Knowles, M. J. Buehler, Nat. Nanotechnol. 2011, 6, 469-479.
[9]
C. M. Rufo, Y. S. Moroz, O. V. Moroz, et al., Nature Chemistry 2014, 6, 303-309.
[10]
aC. Zhang, X. Xue, Q. Luo, et al., ACS Nano 2014, 8, 11715; bM. D. Nothling, Z. Xiao, A. Bhaskaran, et al., ACS Catal. 2019, 9, 168-
187; cO. Zozulia, M. A. Dolan, I. V. Korendovych, Chem. Soc. Rev. 2018, 47, 3621; dA. M. Garcia, M. Kurbasic, S. Kralj, et al.,
Chemical Communications 2017, 53, 8110-8113; eR. Song, X. Wu, B. Xue, et al., J. Am. Chem. Soc. 2019, 141, 223-231; fA. J.
Kleinsmann, B. J. Nachtsheim, Organic & Biomolecular Chemistry 2020, 18, 102-107; gT. O. Omosun, M.-C. Hsieh, W. S. Childers,
et al., Nature Chemistry 2017, 9, 805-809; hP. Makam, S. S. R. K. C. Yamijala, K. Tao, et al., Nature Catalysis 2019; iA. Lampel, R.
V. Ulijn, T. Tuttle, Chemical Society Reviews 2018, 47, 3737-3758; jM. Lee, T. Wang, O. V. Makhlynets, et al., Proceedings of the
National Academy of Sciences 2017, 114, 6191; kO. Zozulia, I. V. Korendovych, Angewandte Chemie International Edition 2020, 59,
8108-8112; lC. Zhang, R. Shafi, A. Lampel, et al., Angew. Chem., Int. Ed. 2017, 56, 14511.
[11]
aI. Bellezza, M. J. Peirce, A. Minelli, Trends in Molecular Medicine 2014, 20, 551-558; bR. Zou, Q. Wang, J. Wu, et al., Chemical
Society Reviews 2015, 44, 5200-5219; cA. Mantion, L. Massüger, P. Rabu, et al., J. Am. Chem. Soc. 2008, 130, 2517-2526.
S. Palacin, D. N. Chin, E. E. Simanek, et al., J. Am. Chem. Soc. 1997, 119, 11807-11816.
T. W. Giessen, M. A. Marahiel, Frontiers in Microbiology 2015, 6.
L. Pérez-Picaso, J. Escalante, H. F. Olivo, et al., Molecules 2009, 14, 2836-2849.
[12]
[13]
[14]
[15]
aZ. Fan, L. Sun, Y. Huang, et al., Nat. Nanotechnol. 2016, 11, 388; bJ. Kong, J. Zhang, Y. Wang, et al., ACS Applied Materials &
Interfaces 2020, 12, 31830-31841.
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
B. M. Connolly, M. Aragones-Anglada, J. Gandara-Loe, et al., Nature Communications 2019, 10, 2345.
B. Wang, P. Prinsen, H. Wang, et al., Chemical Society Reviews 2017, 46, 855-914.
K. Tao, Y. Chen, A. A. Orr, et al., Advanced Functional Materials 2020, 30, 1909614.
B. R. Brooks, C. L. Brooks Iii, A. D. Mackerell Jr, et al., Journal of Computational Chemistry 2009, 30, 1545-1614.
M. O. Guler, S. I. Stupp, J. Am. Chem. Soc. 2007, 129, 12082.
D. Santos-Martins, S. Forli, M. J. Ramos, et al., Journal of Chemical Information and Modeling 2014, 54, 2371-2379.
B. Jiang, D. Duan, L. Gao, et al., Nature Protocols 2018, 13, 1506-1520.
F. Yang, D. Deng, X. Pan, et al., National Science Review 2015, 2, 183-201.
Entry for the Table of Contents
The peptide nano-superstructure employs a cyclic dipeptide as a building block, is inspired by the coffee roasting process, and can be easily
synthesized. The self-assembled biocatalyst displays enzyme-like hydrolysis activity, with exceptional stability and recyclability. This catalytic
peptide assembly provides a potent complement for minimalistic biocatalysts and offers an attractive alternative to the current arsenal of natural
metalloenzymes.
7
This article is protected by copyright. All rights reserved.