L. I. Bosch et al. / Tetrahedron Letters 45 (2004) 2859–2862
2861
National Mass Spectrometry Service in Swansea. TDJ
would also like to thank Professor A. P. de Silva from
the School of Chemistry at the Queen’s University Bel-
fast for helpful discussion.
30
25
20
15
10
5
References and notes
1. de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.;
Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice,
T. E. Chem. Rev. 1997, 97, 1515.
2. James, T. D.; Shinkai, S. Top. Curr. Chem. 2002, 218, 159.
3. Yang, W.; He, H.; Drueckhammer, D. G. Angew. Chem.,
Int. Ed. 2001, 40, 1714.
4. Zhong, Z.; Anslyn, E. V. J. Am. Chem. Soc. 2002, 124,
9014.
5. Tong, A.-J.; Yamauchi, A.; Hayashita, T.; Zhang,
Z.-Y.; Smith, B. D.; Teramae, N. Anal. Chem. 2001, 73,
1530.
0
0
0.02
0.04
0.06
0.08
0.1
[Saccharide] /M
Figure 3. Relative fluorescence intensity versus saccharide concentra-
tion profile of 1c with ( -fructose, ( -glucose, (j) -galactose,
-mannose. The measurement conditions are the same as those in
)
r
D
)
D
D
ꢀ
6. Karnati, V. V.; Gao, X.; Gao, S.; Yang, W.; Ni, W.;
Sankar, S.; Wang, B. Bioorg. Med. Chem. Lett. 2002, 12,
3373.
(N)
D
Figure 2. kex ¼ 244 nm, kem ¼ 350 nm.
7. DiCesare, N.; Lakowicz, J. R. Chem. Commun. 2001,
2022.
8. Cao, H.; Diaz, D. I.; Di Cesare, N.; Lakowicz, J. R.;
Heagy, M. D. Org. Lett. 2002, 4, 1503.
9. Eggert, H.; Frederiksen, J.; Morin, C.; Norrild, J. C.
J. Org. Chem. 1999, 64, 3846.
10. Lorand, J. P.; Edwards, J. O. J. Org. Chem. 1959, 24, 769.
11. Arimori, S.; Bosch, L. I.; Ward, C. J.; James, T. D.
Tetrahedron Lett. 2001, 42, 4553.
Table 1. Stability constant K (coefficient of determination; r2) for
saccharide complexes of fluorescent sensors 1a–c, in pH 8.21 buffer at
kex ¼ 244 nm (sensors 1a and c) and 240 nm (sensor 1b)
K molÀ1 dm3
Saccharides
1a
1b
1c
D
D
D
D
-Fructose
-Glucose
79.2 1.7
(0.99)
212.1 6.9
(0.99)
128.6 2.6
(0.99)
12. Grabowski, Z. R.; Rotkiewicz, K.; Siemiarczuk, A.;
Cowley, D. J.; Baumann, W. Nouv. J. Chim. 1979, 3, 443.
13. Rettig, W.; Chandross, E. A. J. Am. Chem. Soc. 1985, 107,
5617.
14. Rettig, W. Angew. Chem., Int. Ed. Engl. 1986, 25, 971.
15. Joedicke, C. J.; Luethi, H. P. J. Am. Chem. Soc. 2003, 125,
252.
6.4 0.4
(0.99)
8.7
(0.99)
1
6.7 0.5
(0.99)
-Galactose
-Mannose
14.2 0.6
(0.99)
26.6 1.317.7 0.3
(0.99)
16.2 0.8
(0.99)
(0.99)
7.9 01.3413
(0.99)
(0.99)
16. Selected data for 1a: mp: 125–129 ꢁC; found: C, 74.70; H,
5.97; N, 6.63. C13H14BNO2–H2O requires C, 74.72; H,
5.80; N, 6.70%; dH (300 MHz; CD3OD) 4.21 (2H, s, CH2),
6.60–6.70 (3H, m, ArH), 6.95–7.25 (6H, m, ArH); dC
(75 MHz; CD3OD) 51.6, 117.4 (2C), 121.5, 126.9, 127.9,
129.8, 130.2 (2C), 132.7, 146.0, 149.1; m=z (FAB) 497.3
([M+2(3-HOCH2C6H4NO2))2H2O]þ, 100%).
Selected data for 1b: mp: 166 ꢁC; found: C, 73.90; H, 5.56;
This was confirmed by the quantum yield measurements of
compounds 1a–c. The quantum yield U of aniline is 0.0922
(in methanol), and the measured quantum yield U of 1a is
0.0082, 1b is 0.0087 and 1c is 0.0070 (in methanol).23;24
N, 6.72. C13H14BNO2–H2O + 0.03CHCl
requires C,
3
73.60; H, 5.70; N, 6.58%); (HRMS: found [M+2(3-
HOCH2C6H4NO2))2H2O]þ, 497.1776. C27H24BN3O6
requires 497.1758); dH (300 MHz; CD3OD) 4.31 (2H, s,
CH2), 6.55–6.65 (3H, m, ArH), 7.00–7.10 (2H, m, ArH),
7.30 (1H, m, ArH), 7.42 (1H, m, ArH), 7.60 (1H, m, ArH),
7.76 (1H, m, ArH); dC (75 MHz; CD3OD) approximately
49.0 carbon masked by CD3OD, 114.5, 118.3, 129.1,
130.3, 130.8, 133.8, 134.4, 140.8, 150.5; m=z (FAB) 498.1
([M+H+2(3-HOCH2C6H4NO2)–2H2O]þ, 100%).
Selected data for 1c: mp: 164 ꢁC; found: C, 73.90; H, 5.88;
N, 6.15. C13H14BNO2–H2O+0.03CHCl3 requires C, 73.60;
H, 5.70; N, 6.58%); (HRMS: found [M+2 (3-
HOCH2C6H4NO2)–2H2O]þ, 497.1772. C27H24BN3O6
requires 497.1758); dH (300 MHz; CD3OD) 4.30 (2H, s,
CH2–NH), 6.55–6.65 (3H, m, ArH), 7.00–7.10 (2H, m,
ArH), 7.30–7.40 (2H, m, ArH), 7.56 (1H, m, ArH), 7.69
(1H, m, ArH); dC (75 MHz; CD3OD) approximately 49.0
carbon masked by CD3OD, 114.5, 118.4, 127.9, 130.3,
135.5, 144.1, 150.5; m=z (FAB) 497.1 ([M+2(3-
HOCH2C6H4NO2)–2H2O]þ, 100%).
In conclusion, we have prepared two new systems (1b and
c), which display large fluorescence enhancements on
saccharide binding. The fluorescence changes observed
for the LE state at 350 or 360 nm for all three systems
(1a–c) has been ascribed to the fluorescence recovery of
the aniline fluorophore. We are confident that these
discoveries will lead to the development of improved
boronic acid based fluorescent saccharide sensors. Our
ongoing research is directed towards exploiting these
findings in other saccharide selective systems.
Acknowledgements
Financial support from the Royal Society and Beck-
man–Coulter are gratefully acknowledged. We would
also like to thank the University of Bath and the EPSRC