Green Chemistry
Communication
dendritic catalysts. Studies on the nature of catalytic species
formed in the FC reactions as well as the extension of the
application field of our RE(OTf)3-based catalytic system to FC
acylation of very challenging unactivated benzene derivatives
as well as to other reactions are now under way.
4 (a) A. Kawada, S. Mitamura, J. Matsuo, T. Tsuchiya and
S. Kobayashi, Bull. Chem. Soc. Jpn., 2000, 73, 183;
(b) S. Kobayashi and I. Hachiya, J. Org. Chem., 1994, 59,
3590; (c) A. Kawada and S. Kobayashi, Chem. Commun.,
1996, 183; (d) A. G. M. Barrett and D. C. Braddock, Chem.
Commun., 1997, 351; (e) T. Kishida, T. Yamauchi, Y. Kubota
and Y. Sugi, Green Chem., 2004, 6, 57; (f) T. Kishida,
T. Yamauchi, Y. Kubota and Y. Sugi, Green Chem., 2004, 6,
57; (g) L. You, T. E. Hogen-Esch, Y. Zhu, J. Ling and
Z. Shen, Polymer, 2012, 53, 4112.
Experimental
General procedure for recycling tests under microwaves
A CEM, Discover, SP apparatus was used for all reactions under
MW irradiation. A 10 mL reactor equipped with a magnetic
stirring bar was charged with Sc(OTf)3 (0.035 mmol, 15.0 mg),
2-G4 (0.00035 mmol, 18.1 mg) and CH3CN (2 mL). After
15 minutes stirring at room temperature, arene (0.35 mmol)
and an acylating agent (0.70 mmol) were introduced. The tube
was closed, stirred, and heated by MWs (30 W) for the required
time period. After cooling to room temperature, Et2O (8 mL)
was added and the resulting precipitate filtered and washed
twice with Et2O (5 mL). The filtrate was concentrated under
vacuum and the expected product isolated by column chrom-
atography if necessary. The precipitate was directly used for a
new catalytic run: CH3CN (2 mL), arene (0.35 mmol) and an
acylating agent (0.70 mmol) were introduced. The flask was
closed, stirred and heated by MWs for the required time
period.
Note: The maximum temperature reached in the reaction
mixtures mainly depends on the reaction time and to a lesser
extent on the substrate. The temperature is in the range of
130–140 °C for reactions of less than 45 min and in the range
of 150–160 °C for reaction times exceeding one hour (in all
cases, the pressure did not exceed 2 bars in the reactor). Note-
worthy, the performances of acylations at these temperatures
(130–160 °C) under classic heating were the same as those
obtained in refluxing CH3CN.
5 (a) F. Zulfiqar and T. Kitazume, Green Chem., 2000, 2, 137;
S.-G. Lee, J. H. Park, J. Kang and J. K. Lee, Chem. Commun.,
2001, 1698; (b) D. Sarma and A. Kumar, Appl. Catal., A,
2008, 335, 1; (c) F. Zayed, L. Greiner, P. S. Schulz, A. Lapkin
and W. Leitner, Chem. Commun., 2008, 79; (d) Ferrocene
acylation: S. Berardi, V. Conte, G. Fiorani, B. Floris and
P. Galloni, J. Organomet. Chem., 2008, 693, 3015;
(e) B. Y. Park, K. Y. Ryu, J. H. Park and S.-G. Lee, Green
Chem., 2009, 11, 946; (f) A.-V. Mudring and S. Tang,
Eur. J. Inorg. Chem., 2010, 2569.
6 (a) M. T. Reetz and D. Giebel, Angew. Chem., Int. Ed., 2000,
39, 2498; (b) S. Nagayama and S. Kobayashi, Angew. Chem.,
Int. Ed., 2000, 39, 567; (c) S. Selvakumar, N. M. Gupta and
A. P. Singh, Appl. Catal., A, 2010, 372, 130; (d) S. Kobayashi
and S. Nagayama, J. Am. Chem. Soc., 1998, 120, 2985.
7 By exchanging the triflate with a perfluorinated anion, it is
also possible to recycle the resulting RE-based catalyst by
using perfluorinated solvents: (a) W.-B. Yi and C. Cai,
J. Fluorine Chem., 2005, 126, 1191; (b) L. Wang, J. Han,
J. Sheng, H. Tian and Z. Fan, Catal. Commun., 2005, 6, 201;
(c) M. Shi, S.-C. Cui and Y.-H. Liu, Tetrahedron, 2005, 61,
4965; (d) L.-M. Wang, J.-H. Shao, H. Tian, Y.-H. Wang and
B. Liu, J. Fluorine Chem., 2006, 127, 97; (e) M.-G. Shen and
C. Cai, Catal. Commun., 2007, 8, 871 or supercritical CO2:
(f) J. Nishikido, M. Kamishima, H. Matsuzawa and
K. Mikami, Tetrahedron, 2002, 58, 8345.
8 A.-M. Caminade, C.-O. Turrin, R. Laurent, A. Ouali and
B. Delavaux-Nicot, Dendrimers: Towards Catalytic, Material
and Biomedical Uses, Wiley-VCH, 2011.
Acknowledgements
We thank CNRS and ANR Globucat for funding.
9 (a) D. A. Tomalia and P. R. Dvornik, Nature, 1994, 372, 617;
(b) J. W. J. Knapen, A. W. van de Made, J. C. de Wilde,
P. W. N. M. van Leeuwen, P. Wijkens, D. M. Grove and
G. van Koten, Nature, 1994, 372, 659; (c) L. J. Twyman,
A. S. H. King and I. K. Martin, Chem. Soc. Rev., 2002, 31, 69;
(d) R. van Heerbeek, P. C. J. Kamer, P. W. N. M. van
Leeuwen and J. N. H. Reek, Chem. Rev., 2002, 102, 3717;
(e) A.-M. Caminade and J.-P. Majoral, Coord. Chem. Rev.,
2005, 249, 1917; (f) D. Méry and D. Astruc, Coord. Chem.
Rev., 2006, 250, 1965; (g) B. Helms and J. M. J. Fréchet, Adv.
Synth. Catal., 2006, 348, 1125; (h) R. Andrés, J. de Jesús and
J. C. Flores, New J. Chem., 2007, 31, 1171;
(i) A.-M. Caminade, P. Servin, R. Laurent and J.-P. Majoral,
Chem. Soc. Rev., 2008, 37, 56; ( j) A.-M. Caminade, A. Ouali,
M. Keller and J.-P. Majoral, Chem. Soc. Rev., 2012, 41, 4113;
(k) M. Keller, A. Hameau, G. Spataro, S. Ladeira,
A.-M. Caminade, J.-P. Majoral and A. Ouali, Green Chem.,
Notes and references
1 (a) T. Okuhara, Chem. Rev., 2002, 102, 3641;
(b) S. Kobayashi and C. Ogawa, Chem.–Eur. J., 2006, 12,
5954.
2 (a) A. Corma and H. Garcia, Chem. Rev., 2003, 103, 4307;
(b) J. H. Clark, Acc. Chem. Res., 2002, 35, 791.
3 (a) S. Kobayashi, M. Suguira, H. Kitagawa and W. L. Lam,
Chem. Rev., 2002, 102, 2227; (b) S. Kobayashi and
K. Manabe, Acc. Chem. Res., 2002, 35(4), 209;
(c) S. Kobayashi, Aqueous Phase Organometallic Catalysis,
2nd edn, 2004, p. 88; (d) C. G. Fortuna, G. Musumarra,
M. Nardi, A. Procopio, G. Sindona and S. Scirè, J. Chemom.,
2006, 20, 418.
This journal is © The Royal Society of Chemistry 2013
Green Chem.