D
Synlett
H. Tanaka et al.
Cluster
(
3) (a) Güell, I.; Ribas, X. Eur. J. Org. Chem. 2014, 3188. (b) Hussain,
I.; Capricho, J.; Yawerc, M. A. Adv. Synth. Catal. 2016, 358, 3320.
t-BuOH, H2O
O
ref. 8
(c) Corcoran, E. B.; Pirnot, M. T.; Lin, S.; Dreher, S. D.; DiRocco, D.
A.; Davies, I. W.; Buchwald, S. L.; MacMillan, D. W. C. Science
2016, 355, 279.
CuII
CuI
1a
(
4) Representative examples for Cr: (a) Chung, A.; Miner, M. R.;
Richert, K. J.; Rieder, C. J.; Woerpel, K. A. J. Org. Chem. 2015, 80,
t-BuO(O)
t-BuOOH
or thermal (50 oC)
O
266. Representative examples for Co: (b) da Silva, M. J.; Robles-
t-BuO(O)H
t-Bu
O
Dutenhefner, P.; Menini, L.; Gusevskaya, E. V. J. Mol. Catal. A:
Chem. 2003, 201, 71. (c) Pei, L.; Alper, H. J. Mol. Catal. 1992, 72,
t-BuOO
path b
"Cu"
O
O
143. Representative examples for Cu: (d) Li, J.; Zhang, X.; Yi, H.;
Liu, C.; Liu, R.; Zhang, H.; Zhuo, K.; Lei, A. Angew. Chem. Int. Ed.
2015, 54, 1261. (e) Yu, J.-W.; Mao, S.; Wang, Y.-Q. Tetrahedron
Lett. 2015, 56, 1575. (f) Xu, W.; Jiang, Y.; Fu, H. Synlett 2012, 23,
A
3
O
path a
O
O2
8
01. (g) De Houwer, J.; Tehrani, K. A.; Maes, B. U. W. Angew.
Chem. Int. Ed. 2012, 51, 2745. Representative examples for Mo:
h) Murphy, E. F.; Schneider, M.; Mallat, T.; Baiker, A. Synthesis
O
OH
2a
(
O
O
1a
2001, 547. Representative examples for Fe: (i) Miao, C.; Zhao, H.;
Zhao, Q.; Xia, C.; Sun, W. Catal. Sci. Technol. 2016, 6, 1378. Tran-
sition-metal-free conditions: (j) Tada, N.; Ban, K.; Yoshida, M.;
Hirashima, S.-i.; Miura, T.; Itoh, A. Tetrahedron Lett. 2010, 51,
O
O
"Cu"
B
C
6
098. (k) Ishii, Y.; Nakayama, K.; Takeno, M.; Sakaguchi, S.;
Iwahama, T.; Nishiyama, T. J. Org. Chem. 1995, 60, 3934.
l) Rusch, F.; Schober, J.-C.; Brasholz, M. ChemCatChem 2016, 8,
Scheme 2 Possible mechanism
(
2
2
881. (m) Ren, L.; Wang, L.; Lv, Y.; Gao, S. Org. Lett. 2015, 17,
078. (n) Dos Santos, A.; Kaim, L. E.; Grimaud, L. Org. Biomol.
ficial in terms of low cost, benign environmental effects,
ease of operation, and avoidance of toxic byproducts. The
present method will be a useful tool for benzylic sp C–H
Chem. 2013, 11, 3282. (o) Zhang, X.; Ji, X.; Jiang, S.; Liu, L.;
Weeks, B. L.; Zhang, Z. Green Chem. 2011, 13, 1891. (p) Wang, H.;
Wang, Z.; Huang, H.; Tan, J.; Xu, K. Org. Lett. 2016, 18, 5680.
3
functionalization chemistry.
(q) Zhang, Z.; Gao, Y.; Liu, Y.; Li, J.; Zie, H.; Li, H.; Wang, W. Org.
Lett. 2015, 17, 5492. (r) Ma, J.; Hu, Z.; Li, M.; Zhao, W.; Hu, X.;
Mo, W.; Hu, B.; Sun, N.; Shen, Z. Tetrahedron 2015, 71, 6733.
Acknowledgment
(s) Yi, H.; Bian, C.; Hu, X.; Niu, L.; Lei, A. Chem. Commun. 2015,
5
1, 14046.
This work was supported by JSPS KAKENHI Grant Number
JP#16H01007 in Precisely Designed Catalysts with Customized Scaf-
folding (K.O.) and ERATO from JST (M.K.).
(
5) (a) Jiang, J. A.; Chen, C.; Huang, J. G.; Liu, H. W.; Cao, S.; Ji, Y. F.
Green Chem. 2014, 16, 1248. (b) Romano, A. M.; Ricci, M. J. Mol.
Catal. A: Chem. 1997, 120, 71. (c) Sterckx, H.; Houwer, J. D.;
Mensch, C.; Caretti, I.; Tehrani, K. A.; Herrebout, W. A.;
Doorslaer, S. V.; Maes, B. U. W. Chem. Sci. 2016, 7, 346. (d) Liu, J.;
Zhang, X.; Yi, H.; Liu, C.; Liu, R.; Zhang, H.; Zhuo, K.; Lei, A.
Angew. Chem. Int. Ed. 2015, 54, 1261. (e) Zhang, L.; Ang, G. Y.;
Chiba, S. Org. Lett. 2011, 13, 1622. (f) Hayashi, Y.; Komiya, N.;
Suzuki, K.; Murahashi, S. Tetrahedron Lett. 2013, 54, 2706.
Supporting Information
Supporting information for this article is available online at
http://dx.doi.org/10.1055/s-0036-1588969.
S
u
p
p
ortioIgnfrm oaitn
S
u
p
p
ortioIgnfrm oaitn
(g) Yu, J.-W.; Mao, S.; Wang, Y.-Q. Tetrahedron Lett. 2015, 56,
1
575. (h) Wang, Y.-F.; Zhang, F.-L.; Chiba, S. Synthesis 2012, 44,
References and Notes
1526.
(
1) (a) Yang, L.; Huang, H. Chem. Rev. 2015, 115, 3468. (b) Wencel-
Delord, J.; Dröge, T.; Liu, F.; Glorius, F. Chem. Soc. Rev. 2011, 40,
740. (c) Liu, C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A.
(6) Cu-Catalyzed Aerobic C–H Oxygenation of 1a; Typical Proce-
dure: To a test tube charged with CuCl (2.0 mg, 0.02 mmol) and
isochroman (1a; 251 μL, 2.0 mmol) in t-BuOH (20 mL) was
added TBHP (5.0–6.0 M in decane, 10.9 μL, 0.6 mmol) and the
mixture was stirred and heated at 50 °C for 12 h under open air.
After cooling to room temperature, the reaction was quenched
with 25% aqueous ammonia solution and water then the
mixture was extracted with EtOAc. The separated organic layer
4
Chem. Rev. 2015, 115, 12138. (d) He, G.; Wang, B.; Nack, W. A.;
Chen, G. Acc. Chem. Res. 2016, 49, 635. (e) Brückl, T.; Baxter, R.
D.; Ishihara, Y.; Baran, P. S. Acc. Chem. Res. 2012, 45, 826.
(f) Newhouse, T.; Baran, P. S. Angew. Chem. Int. Ed. 2011, 50,
3362. (g) Osberger, T. J.; Rogness, D. C.; Kohrt, J. T.; Stepan, A. F.;
White, M. C. Nature 2016, 537, 214. (h) Neufeldt, S. R.; Sanford,
M. S. Acc. Chem. Res. 2012, 45, 936. (i) Chen, M. S.; White, M. C.
Science 2007, 318, 783. (j) White, M. C. Science 2012, 335, 807.
2) (a) Zhu, X.; Chiba, S. Chem. Soc. Rev. 2016, 45, 4504. (b) Guo, X.-
X.; Gu, D.-W.; Wu, Z.; Zhang, W. Chem. Rev. 2015, 115, 1622.
was dried over Na SO and products were concentrated after fil-
2 4
tration. The residue was purified by silica gel column chroma-
tography (EtOAc/hexane, 1:10) to give isochromanone (2a) as a
colorless oil in 83% yield.
(
(7) NMR data of all products were consistent with previously
reported data. (a) For 2a–e: Dohi, T.; Takenaga, N.; Goto, A.;
Fujioka, H.; Kita, Y. J. Org. Chem. 2008, 73, 7365. (b) For 2g, 2b,
and 2c: Komagawa, H.; Maejima, Y.; Nagano, T. Synlett 2016, 27,
(c) Gunasekarana, N. Adv. Synth. Catal. 2015, 357, 1990.
(d) Iosub, A. V.; Stahl, S. S. ACS Catal. 2016, 6, 8201.
(e) Klussmann, M.; Schweitzer-Chaput, B. Synlett 2016, 27, 190.
789. (c) For 2f: Zhao, B.; Lu, X. Org. Lett. 2006, 8, 5987. (d) For
©
Georg Thieme Verlag Stuttgart · New York — Synlett 2017, 28, A–E