Green Chemistry
Paper
−
1
to the terminal carbon is 45.9 kcal mol (TS2″), which is
9
8 F. X. Zhu, W. Wang and H. X. Li, J. Am. Chem. Soc., 2011,
133, 11632–11640.
.4 kcal mol− higher than that of TS2. Hence, for the
1
hydration of alkynes catalyzed by gold(I) isocyanide com-
pounds, the reaction mechanism is more likely to be the
9 F. Chevallier and B. Breit, Angew. Chem., Int. Ed., 2006, 45,
1599–1602.
pathway presented in Fig. 2 and 3. The barrier height of the 10 T. Tachinami, T. Nishimura, R. Ushimaru, R. Noyori and
rate-determining step for the pathway in Fig. 2 and 3 is only
H. Naka, J. Am. Chem. Soc., 2013, 135, 50–53.
3.7 kcal mol− , and this barrier height is reasonable for the 11 P. Nun, R. S. Ramon, S. Gaillard and S. P. Nolan, J. Organo-
1
2
6
1
reaction to proceed readily at room temperature.
met. Chem., 2011, 696, 7–11.
12 N. Marion, R. S. Ramon and S. P. Nolan, J. Am. Chem. Soc.,
2
009, 131, 448–449.
13 N. Marion, R. Gealageas and S. P. Nolan, Org. Lett., 2008,
0, 1037–1037.
Conclusions
1
In summary, the hydration of different alkynes was success-
fully performed at room temperature in the presence of gold
isocyanide complexes. The substrates investigated here include
electron-rich and electron-deficient alkynes, aromatic and
14 W. L. Wang, A. M. Zheng, P. Q. Zhao, C. Xia and F. W. Li,
ACS Catal., 2014, 4, 321–327.
15 G. A. Carriedo, S. Lopez, S. Suarez-Suarez, D. Presa-Soto
and A. Presa-Soto, Eur. J. Inorg. Chem., 2011, 9, 1442–
+
non-aromatic alkynes. The isocyanide Au(I) cation is extra-
1
447.
6 N. A. Romero, B. M. Klepser and C. E. Anderson, Org. Lett.,
012, 14, 874–877.
7 G. A. Fernandez, A. S. Picco, M. R. Ceolin, A. B. Chopa and
G. F. Silbestri, Organometallics, 2013, 32, 6315–6323.
8 E. Mizushima, K. Sato, T. Hayashi and M. Tanaka, Angew.
Chem., Int. Ed., 2002, 41, 4563–4565.
9 X. Y. Xu, S. H. Kim, X. Zhang, A. K. Das, H. Hirao and
S. H. Hong, Organometallics, 2013, 32, 164–171.
0 C. E. Czegeni, G. Papp, A. Katho and F. Joo, J. Mol. Catal. A:
Chem., 2011, 340, 1–8.
1 P. de Fremont, R. Singh, E. D. Stevens, J. L. Petersen and
S. P. Nolan, Organometallics, 2007, 26, 1376–1385.
2 A. Almassy, C. E. Nagy, A. C. Benyei and F. Joo, Organo-
metallics, 2010, 29, 2484–2490.
3 R. Casado, M. Contel, M. Laguna, P. Romero and S. Sanz, J.
Am. Chem. Soc., 2003, 125, 11925–11935.
4 S. Sanz, L. A. Jones, F. Mohr and M. Laguna, Organometal-
lics, 2007, 26, 952–957.
5 S. Coco, C. Cordovilla, P. Espinet, J. Martin-Alvarez and
P. Munoz, Inorg. Chem., 2006, 45, 10180–10187.
6 M. Benouazzane, S. Coco, P. Espinet, J. M. Martin-Alvarez
and J. Barbera, J. Mater. Chem., 2002, 12, 691–696.
7 R. L. White-Morris, M. Stender, D. S. Tinti, A. L. Balch,
D. Rios and S. Attar, Inorg. Chem., 2003, 42, 3237–3244.
8 G. F. Warnock and N. J. Cooper, Organometallics, 1989, 8,
1826–1827.
polated to be the active center that shows quite high catalytic
ability for most of the substrates. Theoretical research further
reveals the hydration mechanism which includes two steps:
H O attacking the CuC triple bond and explicit H O assisting
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
the proton transfer to the CvC double bond.
2
9–39
Au-RNC, as a precursor for the synthesis of Au-NHC,
shows comparable catalytic ability to Au-NHC in the hydration
of alkynes. This is a rare example that Au-RNC is used as the
catalyst directly to obtain satisfactory hydration results. Con-
sidering the simple structure and high reactivity of gold iso-
cyanide, it deserves to receive more attention in other reactions.
Because gold isocyanide is a homogeneous catalyst, developing
a method to recycle it will bring a more green process. Sup-
6
2
63–65
porting the gold isocyanide on zeolite or ionic liquids
will be an effective method to reuse this compound.
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (no. 21176110 and 21376115) and
Jiangsu Province Natural Science Foundation (BK20141311).
Notes and references
1
2
M. Kutscheroff, Chem. Ber., 1881, 14, 1540–1542.
K. Rao, P. Prasad and N. Lingaiah, Green Chem., 2012, 14, 29 W. F. Gabrielli, S. D. Nogai, J. M. McKenzie, S. Cronje and
507–1514. H. G. Raubenheimer, New J. Chem., 2009, 33, 2208–2218.
Z. Nairoukh, D. Avnir and J. Blum, ChemSusChem, 2013, 6, 30 R. Manzano, F. Rominger and A. Hashmi, Organometallics,
30–432. 2013, 32, 2199–2203.
W. L. Wong, K. P. Ho, L. Y. Lee, K. M. Lam, Z. Y. Zhou, 31 A. Hashmi, T. Hengst, C. Lothschutz and F. Rominger, Adv.
T. H. Chan and K. Y. Wong, ACS Catal., 2011, 1, 116–119. Synth. Catal., 2010, 352, 1315–1337.
F. Trentin, A. M. Chapman, A. Scarso, P. Sgarbossa, 32 E. Gonzalez-Fernandez, J. Rust and M. Alcarazo, Angew.
1
3
4
5
4
R. A. Michelin, G. Strukul and D. F. Wass, Adv. Synth.
Catal., 2012, 354, 1095–1104.
H. T. He, C. R. Qi, X. H. Hu, Y. Q. Guan and H. F. Jiang,
Green Chem., 2014, 16, 3729–3733.
Chem., Int. Ed., 2013, 52, 11392–11395.
33 C. Bartolome, Z. Ramiro, D. Garcia-Cuadrado, P. Perez-
Galan, M. Raducan, C. Bour, A. M. Echavarren and P. Espinet,
Organometallics, 2010, 29, 951–956.
6
7
B. Mathieu, A. Mann and A. Wagner, Chem. Commun., 34 A. Hashmi, Y. Yu and F. Rominger, Organometallics, 2012,
012, 48, 434–436. 31, 895–904.
2
This journal is © The Royal Society of Chemistry 2014
Green Chem.