S. Venkatesan et al. / Tetrahedron Letters 49 (2008) 4339–4341
4341
ꢁ
J. 2003, 9, 5067; (d) Ciriminna, R.; Campestrini, S.; Pagliaro, M. Adv. Synth. Catal.
2003, 345, 1261; (e) Wu, D. L.; Wight, A. P.; Davis, M. E. Chem. Commun. 2003, 6,
758; (f) Campestrini, S.; Carraro, M.; Ciriminna, R.; Pagliaro, M. Tetrahedron Lett.
2008, 49, 419; (g) Pagliaro, M.; Ciriminna, R. Tetrahedron Lett. 2001, 42, 4511.
5. Campestrini, S.; Carraro, M.; Tonellato, U. Tetrahedron Lett. 2004, 45, 7283.
6. (a) Kenneth, M.; Moore, R. B. Chem. Rev. 2004, 104, 4535; (b) Paquette, L. A. In
Encyclopedia of Reagents for Organic Synthesis; John Wiley & Sons: New York,
1995; Vol. 6; (c) Jain, S. L.; Sain, B. Appl. Catal. A 2006, 301, 9117; (d) Schneider,
the molecular oxygen helps to regenerate the Pyc–RuO4 from its
reduced form, Pyc–RuO4 (ruthenate active site).
2ꢁ
In conclusion, a Nafion polymer anchored ruthenium oxide
pyrochlore composite has been utilized as a reactive template for
selective alcohol oxidation with molecular oxygen at room temper-
ature. A series of alcohols were cleanly oxidized to corresponding
aldehydes and ketones in good yields without additives. The cata-
lyst can be recovered and reused several times without any loss of
activity.
M.; Aquino, F.; Bonrath, W. Appl. Catal.
A 2001, 220, 51; (e) Laufer, W.;
Hoelderich, W. F. Chem. Commun. 2002, 16, 1684.
7. (a) Zen, J.-M.; Liou, S.-L.; Kumar, A. S.; Hsia, M.-S. Angew. Chem., Int. Ed. 2003, 42,
577; (b) Ke, J.-H.; Kumar, A. S.; Sue, J.-W.; Venkatesan, S.; Zen, J.-M. J. Mol. Catal.
A 2005, 233, 111; (c) Venkatesan, S.; Kumar, A. S.; Zen, J.-M. J. Mol. Catal. A 2006,
250, 87.
Acknowledgments
8. Hallinan, D. T.; Elabd, Y. A. J. Phys. Chem. B 2007, 111, 13221.
9. IR spectroscopy measurements for alcohol oxidation on pyrochlore composite
were performed by using FTIR spectrometer (Jasco FT/IR–460 PLUS) equipped
with ATR cell. The composite membrane was cut into rectangle (5 cm ꢃ 1.5 cm)
and immersed in the solution of alcohol in acetone (0.03 mM) for 5–10 min.
Then, the alcohol adsorbed membrane was placed on the (ZnSe) ATR crystal
and kept into the cell at room temperature. The spectrum was collected
using mercury–cadmium–telluride detector with 32 scans per spectrum at a
The authors gratefully acknowledge financial support from
National Science Council of Taiwan. This work was supported in
part by the Ministry of Education, Taiwan under the ATU plan.
References and notes
resolution of 4 cmꢁ1
.
10. Alcohol oxidation reaction was typically carried out as follows: A mixture of
benzyl alcohol (5 mg, 0.05 mmol) and several pieces of the membrane catalyst
(250 mg, 0.007 mmol Ru species) in acetone (1.5 mL) was stirred under oxygen
atmosphere (1 atm, O2 ballone) at room temperature. After 5 h, the yield of
benzaldehyde (99%) was determined by GC (China chromatography 9800,
Taiwan, stainless steel column consists of 10% SP-2100 on a Chromosorb W HP
(80/100 mesh) support) using commercially available authentic samples. After
separation, the composite catalyst was sequentially washed with an aqueous
solution of NaOH (1.0 M), deionized water, acetone, and dried in vacuum prior
to recycling.
1. (a) Sheldon, R. A.; Kochi, J. K. Metal-Catalyzed Oxidations of Organic Compounds;
Academic: New York, 1981; (b) Cainelli, G.; Cardillo, G. Chromium Oxidations in
Organic Chemistry; Springer: Berlin, 1984.
2. (a) Sheldon, R. A.; Arends, I. W. C. E.; Dijksman, A. Catal. Today 2000, 57, 157; (b)
Punniyamurthy, T.; Velusamy, S.; Javed, I. Chem. Rev. 2005, 105, 2329; (c) Ishii,
Y.; Sakaguchi, S.; Iwahama, T. Adv. Synth. Catal. 2001, 343, 393.
3. (a) Mallat, T.; Baiker, A. Chem. Rev. 2004, 104, 3037; (b) Pagliaro, M.;
Campestrinian, S.; Ciriminna, R. Chem. Soc. Rev. 2005, 34, 837.
4. (a) Hinzen, B.; Ley, S. V. J. Chem. Soc., Perkin Trans. 1 1997, 1907; (b) Hinzen, B.;
Lenz, R.; Ley, S. V. Synthesis 1998, 977; (c) Ciriminna, R.; Pagliaro, M. Chem. Eur.