9098
T. Sugai, A. Itoh / Tetrahedron Letters 48 (2007) 9096–9099
+
-
Mizugaki, T.; Kaneda, K. J. Mol. Catal. A: Chem. 2004,
12, 161–170; (c) Baucherel, X.; Gonsalvi, L.; Arends, I.
CBr + PPh
Ph P - CBr + Br
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
4
3
3
3
2
W. C. E.; Ellwood, S.; Sheldon, R. A. Adv. Synth. Catal.
2004, 346, 286–296; (d) Matsumura, Y.; Yamamoto, Y.;
Moriyama, N.; Furukubo, S.; Iwasaki, F.; Onomura, O.
Tetrahedron Lett. 2004, 45, 8221–8224; (e) Uozumi, Y.;
Nakao, R. . Angew. Chem., Int. Ed. 2003, 42, 194–197; (f)
Ji, H.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Tetrahedron
Lett. 2002, 43, 7179–7183; (g) Bjorsvik, H.-R.; Liguori, L.;
Merinero, J. A. V. J. Org. Chem. 2002, 67, 7493–7500; (h)
Cicco, S. R.; Latronico, M.; Mastrorilli, P.; Suranna, G.
P.; Nobile, C. F. . J. Mol. Catal. A: Chem. 2001, 165, 135–
140; (i) Jenzer, G.; Schneider, M. S.; Wandeler, R.; Mallat,
T.; Baiker, A. J. Catal. 2001, 199, 141–148; (j) Ishii, Y.;
Sakaguchi, S.; Iwahama, T. Adv. Synth. Catal. 2001, 343,
hν, O2
Br-
Br
RCH OH + Br
RCHOH + HBr
2
33
hν
2
HBr + 1/2 O2
Br + H O
2 2
3
3
+ Br2
+ Br
R-CHO + HBr + Br
34
3
3
4
5
R-CO + HBr
3
5
3
93–427, and references cited therein.
+
Br2
R-COBr Br
+
3. For recent examples of oxidation of alcohols to the
corresponding aldehydes with molecular oxygen, see: (a)
Ohkubo, K.; Suga, K.; Fukuzumi, S. Chem. Commun.
2006, 2018–2020; (b) Guan, B.; Xing, D.; Cai, G.; Wan,
X.; Yu, N.; Fang, Z.; Yang, L.; Shi, Z. J. Am. Chem. Soc.
3
6
36
+ H O
R-CO H + HBr
2
2
Scheme 1. Plausible path of the aerobic photo-oxidation of alcohols.
2
005, 127, 18004–18005; (c) Mu, R.; Liu, Z.; Yang, Z.;
Liu, Z.; Wu, L.; Liu, Z.-L. Adv. Synth. Catal. 2005, 347,
333–1336; (d) Schultz, M. J.; Hamilton, S. S.; Jensen, D.
1
under irradiation of vis. Bromine, then, was formed by
aerobic photo-oxidation of hydrogen bromide, which
is generated in Eq. 3 (Eq. 4). We believe that the oxida-
tion was not observed when using 3-pyridinemethanol
and picoline as substrate since they trap this hydrogen
R.; Sigman, M. S. J. Org. Chem. 2005, 70, 3343–3352; (e)
Liu, R.; Liang, X.; Dong, C.; Hu, X. J. Am. Chem. Soc.
2004, 126, 4112–4113; (f) Mori, K.; Hara, T. i.; Mizugaki,
T.; Ebitani, K.; Kaneda, K. J. Am. Chem. Soc. 2004, 126,
10657–10666; (g) Marko, I. E.; Gautier, A.; Dumeunier,
R.; Doda, K.; Philippart, F.; Brown, S. M.; Urch, C. J.
Angew. Chem., Int. Ed. 2004, 43, 1588–1591; (h) Stahl, S.
S. Angew. Chem., Int. Ed. 2004, 43, 3400–3420, and
references cited therein; (i) Iwasawa, T.; Tokunaga, M.;
Obora, Y.; Tsuji, Y. J. Am. Chem. Soc. 2004, 126, 6554–
1
0
11
bromide at the N-atom. Aldehyde 34 was afforded
by abstraction of a hydrogen radical with bromine
(
Eq. 5), and the re-generated bromo radical abstracted
a hydrogen radical from 34 to give radical species 35,
which was transformed to acyl bromide 36 (Eqs. 6 and
6
555; (j) Jensen, D. R.; Schultz, M. J.; Mueller, J. A.;
Sigman, M. S. Angew. Chem., Int. Ed. 2003, 42, 3810–
813.
1
2
7
). The carboxylic acid was formed by reaction with
water, generated in Eq. 4, although there was a possibil-
ity that the dissolved water in the solvent effected the
reaction (Eq. 8).
3
4. (a) Kuwabara, K.; Itoh, A. Synthesis 2006, 1949–1952; (b)
Hirashima, S.-I.; Hashimoto, S.; Masaki, Y.; Itoh, A.
Tetrahedron 2006, 62, 7887–7891; (c) Hirashima, S.-I.;
Itoh, A. Synthesis 2006, 1757–1759; (d) Itoh, A.; Hashim-
oto, S.; Kodama, T.; Masaki, Y. Synlett 2005, 2107–2109;
In conclusion, we have found a facile method for aero-
bic oxidation of alcohols and a methyl group at the aro-
matic nucleus directly to the corresponding carboxylic
acid in the presence of a catalytic amount of CBr4–
(
2
e) Itoh, A.; Hashimoto, S.; Masaki, Y. Synlett 2005,
639–2640; (f) Itoh, A.; Hashimoto, S.; Kuwabara, K.;
Kodama, T.; Masaki, Y. Green Chem. 2005, 7, 830–832;
g) Itoh, A.; Kodama, T.; Hashimoto, S.; Masaki, Y.
Ph P under visible light irradiated from a general-
3
(
purpose fluorescent lamp. This new form of oxidation
reaction is interesting due to the non-use of metals and
halogenated solvents, waste reduction, and the use of
Synthesis 2003, 2289–2291.
5
6
7
8
. Among our study, acetonitrile was a suitable solvent for
alcohols and ethyl acetate was suitable for a methyl group
at the aromatic nucleus, respectively, see Supplementary
data.
1
3
molecular oxygen.
. The radical species of secondary alcohols are, in general,
generated easier than that of primary ones. Unfortunately,
we do not have any direct data to explain this result, and
the study is now in progress in our laboratory.
. Since transesterification of the substrate alcohols occurred
when using ethyl acetate as solvent, we generally used
acetonitrile when using alcohols as substrates and ethyl
acetate when using aromatic methyl group as substrates.
. We also examined with 4-methyl benzyl alcohol to
study the selectivity between alcohol and methyl group,
and we could obtain 4-methylbenzoic acid in 60%
yield as the main product. Alcohol is relatively easily
oxidized than methyl group; however, the selectivity is not
so clear.
Supplementary data
References and notes
. Larock, R. C. Comprehensive Organic Transformations: A
1
Guide to Functional Group Preparations; Wiley-VCH: New
York, 1999.
9
. Only 19% of 2 was obtained.
2
. For recent examples of oxidation of alcohols to the
corresponding carboxylic acids with molecular oxygen,
see: (a) Figiel, P. J.; Sobczak, J. M.; Ziolkowski, J. J.
Chem. Commun. 2004, 244–245; (b) Ebitani, K.; Ji, H.-B.;
1
0. Although we examined this reaction with 3-methylpyrrole
as test substrate, the complex mixture was obtained
instead of the corresponding carboxylic acid.