C O M M U N I C A T I O N S
Scheme 3. Reaction Using Other Aldehydes
Table 2. Optimization of the Reactionsa
entries
base
catalyst
time (d)
yield (2a %)b
1
2
3
4
5
6
7
8
9
Cs2CO3
K2CO3
K3PO4
3a
3a
3a
3a
3a
3a
3b
3c
3d
3
4
4
5
4
4
4
4
4
92
70
81
50
95
95
c
Na2CO3
“green” source. On the other hand, this reaction also shows a new
economical way to oxidize aromatic aldehydes under mild condi-
tions using carbon dioxide.
c
Cs2CO3
c
K2CO3
K2CO3
K2CO3
c
40 (1a, 50%)
25 (1a, 75%)
32 (1a, 66%)
c
c
Acknowledgment. This work was supported by the Institute
of Bioengineering and Nanotechnology (Biomedical Research
Council, Agency for Science, Technology and Research, Singapore.
K2CO3
a The reactions were conducted at 0.5 mmol scale in 1 mL of
anhydrous DMF. Determined by crude H NMR. c DMSO as solvent.
b
1
Supporting Information Available: Experimental procedures, NMR
of products, and DFT calculation. This material is avaible free of charge
Scheme 2. Catalytic Cycle in the Reduction of CO2 To Form CO
References
(2) Reviews about transformation of carbon dioxide see: (a) Marks, T. J.; et
al. Chem. ReV. 2001, 101, 953. (b) Sakakura, T.; Choi, J.-C.; Yasuda, H.
Chem. ReV. 2007, 107, 2365.
(3) Lewis, N. S.; Nocera, D. G. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 15729.
(4) (a) Kaneco, S.; Katsumata, H.; Suzuki, T.; Ohta, K. Chem. Eng. J. 2006,
116, 227. (b) Olah, G. A.; Goeppert, A.; Prakash, G. K. S. J. Org. Chem.
2009, 74, 487.
(5) (a) Lide, D. R., editor in chief; CRC Handbook of Chemistry and Physics,
73rd ed.; CRC Press Inc.: Boca Raton, FL, 1992. (b) Ueno, A.; Sato, T.;
Todo, N.; Kotera, Y.; Takasaki, S. Chem. Lett. 1980, 1067.
(6) For recent reviews, see: Hegg, E. L. Acc. Chem. Res. 2004, 37, 775.
(7) (a) Maidan, R.; Willner, I. J. Am. Chem. Soc. 1986, 108, 8100. (b) Lin,
W.; Frei, H. J. Am. Chem. Soc. 2005, 127, 1610.
(8) Selected references see: (a) Simo’n-Manso, E.; Kubiak, C. P. Organome-
tallics 2005, 24, 96. (b) Hammouche, M.; Lexa, D.; Momenteau, M.;
Save’ant, J.-M. J. Am. Chem. Soc. 1991, 113, 8455.
carbon monoxide was confirmed by GC analysis and by the
reduction of PdCl2 solution (see Supporting Information).20
The calculated free energy profile (DFT, B3LYP/6-31G level)
showed that the overall reaction is an exothermic process with a
small negative energy difference of ∆E ) -7.0 kcal/mol.21 The
structure of the identified stationary point related to 5 in Scheme 2
is depicted in SFigure 2 (SI).
With the optimized conditions in hand, various aldehydes as
reductants were examined with 10 mol % IMes as organocatalyst.
Cinnamaldehyde with a methyl carboxylate group (2b) and ben-
zaldehydes with strong electron-withdrawing groups (2c and 2d)
could split carbon dioxide efficiently in shorter reaction times.
Halogen-substituted benzaldehydes and benzaldehyde with electron-
donating groups (2e, 2f, 2i, 2j) are also tolerated to reduce carbon
dioxide by increasing the temperature (60 or 80 °C). And tereph-
thalaldehyde was selectively oxidized to 4-formylbenzoic acid with
excellent yield at room temperature (3g).
(9) Recent reviews see: (a) Yin, X. L.; Moss, J. R. Coord. Chem. ReV. 1999,
181, 27. (b) Leitner, W. Coord. Chem. ReV. 1996, 153, 257.
(10) Laitar, D. S.; Mu¨ ller, P.; Sadighi, J. P. J. Am. Chem. Soc. 2005, 127, 17196.
(11) For reviews of NHC as an organocatalyst, see: (a) Enders, D.; Niemeier,
O.; Henseler, A Chem. ReV. 2007, 107, 5606. (b) Marion, N.; Diez-
Gonzalez, S.; Nolan, S. P. Angew. Chem., Int. Ed. 2007, 46, 2988.
(12) (a) Holbrey, J. D.; Reichert, W. M.; Tkatchenko, I.; Bouajila, E.; Walter,
O.; Tommasi, I.; Rogers, R. D. Chem. Commun 2003, 28. (b) Duong, H. A.;
Tekavec, T. N.; Arif, A. M.; Louie, J. Chem.Commun. 2004, 112.
(13) For selected references, see: (a) Xie, Y.; Zhang, Z.; Jiang, T.; He, J.; Han,
B.; Wu, T.; Ding, K. Angew. Chem., Int. Ed. 2007, 46, 7255. (b) Kayaki,
Y.; Yamamoto, M.; Ikariya, T. Angew. Chem., Int. Ed. 2009, 48, 4194.
(14) Riduan, S. N.; Zhang, Y.; Ying, J. Y. Angew. Chem., Int. Ed. 2009, 48,
3322.
(15) Sohn, S. S.; Bode, J. W. Org. Lett. 2005, 7, 3873.
(16) Sohn, S. S.; Rosen, E. L.; Bode, J. W. J. Am. Chem. Soc. 2004, 126, 14370.
(17) (a) For references for CO2 as soft oxidant, see: Reddy, B. M.; Lee, S.-C.;
Han, D.-S.; Park, S.-E. Appl. Catal., B 2009, 87, 230. and therein references.
(b) For NHC-catalyzed oxidations in the presence of oxidants, see: Maki,
B. E.; Chan, A.; Phillips, E. M.; Scheidt, K. A. Tetrahedron 2009, 65,
3102. and therein references.
(18) No reduced product of cinnnamaldehyde was detected, so self-redox reaction
was excluded.
In summary, we have achieved the catalytic reduction of carbon
dioxide to carbon monoxide under mild conditions using aromatic
aldehydes as reductants and NHCs as organocatalysts. This carbon
dioxide splitting reaction provides a new method for carbon dioxide
reduction and steps forward in utilizing carbon dioxide as renewable
(19) Lavallo, V.; Canac, Y.; Donnadieu, B.; Schoeller, W. W.; Bertrand, G.
Angew. Chem., Int. Ed. 2006, 45, 3488.
(20) Christman, A. A.; Randall, E. L. J. Biol. Chem. 1933, 595.
(21) For calculated structure, see Supporting Information.
JA909038T
9
J. AM. CHEM. SOC. VOL. 132, NO. 3, 2010 915