Organic Process Research & Development
Article
internal volume of 5 mL were used, and pumps 1 and 2 were
(12) Marson, C. M.; Giles, P. R. Synthesis Using Vilsmeier Reagents;
CRC: Boca Raton, 1994.
loaded with POCl and DMF. A reactor with an internal
3
(
13) Marson, C. M. Tetrahedron 1992, 48, 3659−3726.
volume of 100 μL was connected to the FlowIR with a total
system volume of 120 μL, including the flow cell of the FlowIR.
Flows were fixed to corresponding reaction times, and IR
spectra were recorded continuously.
HPLC Analysis. Atline HPLC-analysis was performed, and
samples were loaded into the injector of a Shimadzu HPLC
system (Adsorbosphere C18 column (length: 100 mm, ID: 4.6
mm)) with a flow rate of 1.0 mL/min; acetonitrile/water: initial
(
14) (a) Fujisawa, T.; Lida, S.; Sato, T. Chem. Lett. 1984, 1173−1176.
(
(
b) Newman, M. S.; Sujeeth, P. K. J. Org. Chem. 1978, 43, 4367−4369.
c) Boeckman, R. K. Jr.; Ganem, B. Tetrahedron Lett. 1974, 15, 913−
17.
9
(
15) Majo, V. J.; Perumal, P. T. Tetrahedron Lett. 1997, 38, 6889−
6
892.
(16) Rao, M. S. C.; Rao, G. S. K. Indian J. Chem., Sec. B. 1988, 27,
213−216.
(
1
40/60); 4.0 min (40/60); 12.5 min (90/10); 13.0 (40/60);
7.5 (40/60), using a UV detector with analysis channels at 210
(17) Jugie, G.; Smith, J. A. S.; Martin, G. J. J. Chem. Soc., Perkin Trans.
2
1975, 925−928.
18) Dyer, U. C.; Henderson, D. A.; Mitchell, M. B.; Tiffin, P. D. Org.
Process Res. Dev. 2002, 6, 311−316.
19) Min, K.; Lee, T.-H.; Park, C. P.; Wu, Z.-Y.; Girault, H. H.; Ryu,
I.; Fukuyama, T.; Mukai, Y.; Kim, D. Angew. Chem., Int. Ed. 2010, 49,
063−7067. Unfortunately, this article does not describe any process
details.
(
and 254 nm. Accurate flow rates of the substrate in the
optimization experiments were calculated using toluene as an
internal standard and determined with our recently developed
(
28
flow marker methodology.
7
4. CONCLUSION
(20) Noland, W. E.; Lanzatella, N. P.; Sizova, E. P.; Venkatraman, L.;
Afanasyev, O. V. J. Heterocycl. Chem. 2009, 46, 503−534.
It has been demonstrated that the Vilsmeier−Haack
formylation can be readily performed in a continuous flow
microreactor system. A full optimization study was performed
(21) MacInnes, J. M.; Vikhansky, A.; Allen, R. W. K. Chem. Eng. Sci.
2
007, 62, 2718−2727.
involving reaction time (t ), temperature (T) and molar ratio
r
(
MR) as process parameters. Optimal conditions were obtained
at a reaction time of 180 s at 60 °C with a molar ration of 1.5
and DMF as a solvent. Other less toxic solvents also showed
remarkably high conversions within 180 s. Under the optimized
conditions, scale-up of the reaction has been successfully
realized with a continuous production of 2-formylpyrrole of
(24) Nieuwland, P. J.; Segers, R.; Koch, K.; van Hest, J. C. M.; Rutjes,
F. P. J. T. Org. Process Res. Dev. 2011, 15, 783−787.
(25) Nieuwland, P. J.; Koch, K.; van Harskamp, N.; Wehrens, R.; van
Hest, J. C. M.; Rutjes, F. P. J. T. Chem. Asian J. 2010, 10, 799−805.
(26) Delville, M. M. E.; Nieuwland, P. J.; Janssen, P.; Koch, K.; van
5
.98 g/h. The newly developed process was also shown to be
Hest, J. C. M.; Rutjes, F. P. J. T. Chem. Eng. J. 2010, 167, 556−559.
more widely applicable by the successful formylation of several
amine-substituted arenes.
1
(
27) H NMR: δ 10.75 (br s, 1H), 9.48 (s, 1H), 7.18 (td, J = 1.3, 2.5
Hz, 1H), 7.01 (dd, J = 1.4, 3.9 Hz, 1H), 6.35 (dd, J = 2.5, 3.9 Hz, 1H).
1
H NMR data are in agreement with literature: Choy, J.; Jaime-
ASSOCIATED CONTENT
■
Figueroa, S.; Jiang, L.; Wagner, P. Synth. Commun. 2008, 38, 3840−
3853.
(28) Nieuwland, P. J.; Koch, K.; van Hest, J. C. M.; Rutjes, F. P. J. T.
Open Chem. Eng. J. 2010, 4, 61−67.
*
S
Supporting Information
More detailed information on GC retention times and reaction
AUTHOR INFORMATION
ACKNOWLEDGMENTS
■
Dr. Jon Goode from Mettler Toledo Autochem is kindly
acknowledged for his fruitful collaboration in the loan of an
inline IR-monitoring system and the data analysis.
REFERENCES
■
(
(
(
1) Gattermann, L.; Koch, J. A. Ber. 1897, 30, 1622−1624.
2) Vilsmeier, A.; Haack, A. Ber. 1927, 60, 119−122.
3) Rahm, A.; Guilhemat, R.; Pereyre, M. Synth. Commun. 1982, 12,
4
(
(
(
(
(
85−487.
4) Duff, J. C.; Bills, E. J. J. Chem. Soc. 1932, 1987−1988.
5) Reimer, K.; Tiemann, F. Ber. 1876, 9, 824−828.
6) Rieche, A.; Gross, H.; Hoft, E. Chem. Ber. 1960, 91, 88−91.
7) Bollyn, M. Org. Process Res. Dev. 2005, 9, 982−996.
8) Meth-Cohn, O.; Stanforth, S. P. In Comprehensive Organic
Synthesis; Trost, B. M.; Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol.
2
(
(
, pp 777−794.
9) Lai, G.; Xiu, R.; Santos, J.; Mintz, E. A. Synlett 1997, 1275−1278.
10) Perumal, P. T.; Amaresh, R. R. Tetrahedron 1999, 55, 8083−
8094.
(
11) Pedras, M. S. C.; Zaharia, I. L. Org. Lett. 2001, 3, 1213−1216.
9
38
dx.doi.org/10.1021/op2003437 | Org. Process Res. Dev. 2012, 16, 934−938