M. E. Olson et al. / Tetrahedron Letters 51 (2010) 3969–3971
3971
Table 1 (continued)
Entry
Acetala
Catalyst (mol %)
5.0
Temp
Timeb
1 h
Yieldc,d (%)
O
20
Reflux
98e
O
H3CO
H3C
O
21
22
5.0
5.0
5.0
Reflux
Reflux
Reflux
1 h
86
O
O
1 h
74
O
O
92e
O
23
1.25 h
Acetals were either purchased commercially or synthesized by a previously reported method.8
The progress of the reaction was followed by GC, TLC or 1H NMR.
Refers to yield of the isolated product. The crude products from acyclic acetals were found to be P98% pure and hence further purification was deemed unnecessary. It
a
b
c
was necessary to purify crude products from a few cyclic acetals (entries 14, 15, 17, 21 and 22) by flash chromatography.
d
All products are commercially available and were characterized by 1H and 13C NMR spectroscopy, and by GC analysis.
Product was 97% pure by GC analysis.
The product was 4-(tert-butyldimethylsilyloxy)benzaldehyde.
The reaction was carried out in CH3OH/H2O (8:2, v/v). The crude product was purified by dissolving in ether and extraction with aqueous 2 M NaOH, followed by
e
f
g
acidification with aqueous 3 M H2SO4. The product was 5-bromo-2-hydroxybenzaldehyde.
T.; Kondoh, H.; Honda, T.; Ishizone, H.; Suzuki, Y.; Mori, W. Chem. Lett. 1989, 18,
progress of the reaction was monitored by GC. After 1 h, the reac-
901; Bi(NO3)3Á5H2O: (f) Eash, K. J.; Pulia, M. S.; Wieland, L. C.; Mohan, R. S. J. Org.
tion mixture was extracted with EtOAc (2 Â 20 mL). The organic
Chem. 2000, 65, 8399; BiCl3: (g) Sabitha, G.; Babu, R. S.; Reddy, E. V.; Yadav, J. S.
layer was washed with aqueous saturated NaHCO3 (15 mL), aque-
ous saturated NaCl (15 mL), dried (Na2SO4), and concentrated on a
rotary evaporator to yield 0.3327 g (88%) of p-anisaldehyde as a
clear liquid. The product was determined by GC analysis, and 1H
and 13C NMR spectroscopy to be 97% pure.
Chem. Lett. 2000, 29, 1074; (h) Eshghi, H.; Rahimizadeh, M.; Saberi, S. Catal.
Commun. 2008, 9, 2460; MW-assisted Er(OTf)3: (i) Procopio, A.; Gaspari, M.;
Nardi, M.; Oliverio, M.; Romeo, R. Tetrahedron Lett. 2008, 49, 1961; CF3COOH: (j)
Li, W.; Li, J.; Wu, Y.; Fuller, N.; Markus, M. A. J. Org. Chem. 2010, 75, 1077.
3. TiCl4: (a) Balme, G.; Goré, J. J. Org. Chem. 1983, 48, 3336; FeCl3Á6H2O on silica gel:
(b) Kim, K. S.; Song, Y. H.; Lee, B. H.; Hahn, C. S. J. Org. Chem. 1986, 51, 404; Ph3P/
CBr4: (c) Johnstone, C.; Kerr, W. J.; Scott, J. S. J. Chem. Soc., Chem. Commun. 1996,
341; CeCl3: (d) Marcantoni, E.; Nobili, F.; Bartoli, G.; Bosco, M.; Sambri, L. J. Org.
Chem. 1997, 62, 4183; FeCl3Á6H2O: (e) Sen, S. E.; Roach, S. L.; Boggs, J. K.; Ewing,
G. J.; Magrath, J. J. Org. Chem. 1997, 62, 6684; TMSN(SO2F)2: (f) Kaur, G.; Trehan,
A.; Trehan, S. J. Org. Chem. 1998, 63, 2365; Ceric ammonium nitrate: (g) Markó, I.
E.; Ates, A.; Gautier, A.; Leroy, B.; Plancher, J.-M.; Quesnel, Y.; Vanherck, J.-C.
Angew. Chem., Int. Ed. 1999, 38, 3207; Bi(OTf)3Á4H2O: (h) Carrigan, M. D.; Sarapa,
D.; Smith, R. C.; Wieland, L. C.; Mohan, R. S. J. Org. Chem. 2002, 67, 1027; (i)
Dalpozzo, R.; De Nino, A.; Maiuolo, L.; Procopio, A.; Tagarelli, A.; Sindona, G.;
Bartoli, G. J. Org. Chem. 2002, 67, 9093; b-Cyclodextrin: (j) Krishnaveni, N. S.;
Surendra, K.; Reddy, M. A.; Nageswar, Y. V. D.; Rao, K. R. J. Org. Chem. 2003, 68,
2018; I2: (k) Sun, J.; Dong, Y.; Cao, L.; Wang, X.; Wang, S.; Hu, Y. J. Org. Chem.
2004, 69, 8932; TESOTf-2,6-lutidine: (l) Fujioka, H.; Sawama, Y.; Murata, N.;
Okitsu, T.; Kubo, O.; Matsuda, S.; Kita, Y. J. Am. Chem. Soc. 2004, 126, 11800;
CuSO4/NaI: (m) Bailey, A. D.; Cherney, S. M.; Anzalone, P. W.; Anderson, E. D.;
Ernat, J. J.; Mohan, R. S. Synlett 2006, 215; In(OTf)3: (n) Gregg, B. T.; Golden, K. C.;
Quinn, J. F. J. Org. Chem. 2007, 72, 5890.
(Table 1, entry 9): A mixture of tert-butyl(4-(dimethoxymeth-
yl)phenoxy)dimethylsilane (0.2109 g, 0.75 mmol) in H2O (4.0 mL)
was stirred at room temperature as Fe(OTs)3Á6H2O (0.0101 g,
0.0149 mmol, 2.0 mol %) was added. The progress of the reaction
was monitored by GC. After 45 min, the reaction mixture was ex-
tracted with EtOAc (2 Â 20 mL). The organic layer was washed
with aqueous saturated NaHCO3 (10 mL), aqueous saturated NaCl
(10 mL), dried (Na2SO4), and concentrated on a rotary evaporator
to yield 0.1617 g (92%) of 4-(tert-butyldimethylsilyloxy)benzalde-
hyde as a clear liquid. The product was determined by GC analysis
and 1H NMR to be 99% pure.
Acknowledgments
4. For examples of use of Fe(OTs)3 as a catalyst in organic synthesis, see (a)
Mansilla, H.; Afonso, M. M. Synth. Commun. 2008, 38, 2607; (b) Spafford, M. J.;
Anderson, E. D.; Lacey, J. R.; Palma, A. C.; Mohan, R. S. Tetrahedron Lett. 2007, 48,
8665; (c) Bothwell, J. M.; Angeles, V. V.; Carolan, J. P.; Olson, M. E.; Mohan, R. S.
Tetrahedron Lett. 2010, 51, 1056.
5. (a) Li, C.-J.; Chan, T.-H. Organic Reactions in Aqueous Media; Wiley-Interscience
Publication: New York, 1997; For a review on organic chemistry in water, see (b)
Li, C.-J.; Chen, L. Chem. Soc. Rev. 2006, 35, 68.
The authors gratefully acknowledge the funding from the Na-
tional Science Foundation for a RUI (Research in Undergraduate
Institutions) Grant (# 0650682) awarded to R.S.M.
References and notes
6. We have recently reported (see Ref. 4c) the iron(III) tosylate catalyzed
deprotection of tert-butyldimethylsilyl ethers in CH3OH as a solvent. However,
in this case no deprotection was observed in water as a solvent.
1. (a) Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 3rd ed.;
John Wiley and Sons, Inc: New York, 1999; (b) Hanson, J. R. Protecting Groups in
Organic Synthesis, 1st ed.; Blackwell Science, Inc: Malden, MA, 1999; (c)
Kocienski, P. J. Protecting Groups, 1st ed.; Georg Thieme Verlag: Stuttgart, 1994.
2. p-TsOH/acetone: (a) Colvin, E. W.; Raphael, R. A.; Roberts, J. S. J. Chem. Soc., Chem.
Commun. 1971, 858; 50% Trifluoroacetic acid in CHCl3–H2O: (b) Ellison, R. A.;
Lukenbach, E. R.; Chiu, C.-W. Tetrahedron Lett. 1975, 16, 499; LiBF4: (c) Lipshutz,
B. H.; Harvey, D. F. Synth. Commun. 1982, 12, 267; Amberlyst-15/aqueous
acetone: (d) Coppola, G. M. Synthesis 1984, 1021; aqueous DMSO: (e) Kametani,
7. According to the MSDS sheets, iron(III) tosylate is safer to use than p-
toluenesulfonic acid. Iron(III) tosylate has
a HMIS (hazardous material
identification system) rating of 2 (moderate hazard) while p-toluenesulfonic
acid has a HMIS rating of 3 (serious hazard).
8. (a) Leonard, N. M.; Oswald, M. C.; Freiberg, D. A.; Nattier, B. A.; Smith, R. C.;
Mohan, R. S. J. Org. Chem. 2002, 67, 5202; (b) Podgorski, D. M.; Krabbe, S. W.; Le,
L. N.; Sierszulski, P. R. Synthesis, in press.