´
CORMA, MARTINEZ-SORIA, AND SCHNOEVELD
1
72
4
5
. Chen, J., Worldwide Solid Acid Process Conference, Session 3, Cata-
lyst Consultant Inc., Houston, TX, 14–16 November 1993.
. Meima, G. R., van der Aalst, M. J. M., Samson, M. S. V., Vossenbeerg,
N. J., Adiansens, R. J. O., Garces, J. M., and Lee, J. G., Worldwide
Solid Acid Process Conference, Session 3, Catalyst Consultant Inc.,
Houston, TX, 14–16 November 1993.
6. Chem. Eng. News, 18 December, 12 (1995). Hydrocarbon Processes
October, 40 (1996).
7
8
. Chen, N. Y., and Garwood, W. E., Catal. Rev.-Sci. Eng. 28, 185 (1986).
. Kresge, C. T., Le, Q. N., Roth, W. J., and Thompson, R. T., U.S. Patent
5,259,565, 1993.
9. Chu, P., Landis, M. E., and Le, Q. N., U.S. Patent 5,334,795, 1994.
1
1
0. Holtermann, D. L., and Innes, R., U.S. Patent 5,149,894, 1992.
1. Leonowicz, M. E., Lawton, I. A., Lawton, S. L., and Rubin, M. K.,
Science 264, 1910 (1994). Beaumont, L. R., Vartuli, J. C., Roth, W. J.,
Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T.-W., Olson,
D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B., and Schenker,
J. A., J. Am. Chem. Soc. 114, 10834 (1992).
FIG. 11. Arrhenius plot for kinetic constant of the Eley–Rideal
mechanism.
1
2. Lawton, S. L., Leonowicz, M. E., Partridge, R. D., Chu, P., and Rubin,
M. K., Microporous Mesoporous Mater. 23(1–2), 109 (1998).
can conclude that while benzene is adsorbed, the product
KbCb is negligible compared to the product KaCa, and the 13. Corma, A., Corell, C., Mart ı´ nez, A., and P e´ rez-Pariente, J., Appl.
adsorption term of the expression rate, Eq. [4], is governed
mainly by the propene adsorption.
In Fig. 11 the Arrhenius plot for the kinetic rate constant
is given. As we can see the fit of the experimental values to
Catal. A 115, 121 (1994). Corma, A., Corell, C., and P e´ rez-Pariente, J.
Zeolites 15, 2 (1995).
4. Corma, A., Forn e´ s, V., Mart ´ı nez, A., and Orchill e´ s, A. V., ACS Symp.
Ser. 368, 542 (1988).
1
1
5. Emeis, C. A., J. Catal. 141, 347 (1993).
the Arrhenius equation is good, and an activation energy of 16. Corma, A., Forn e´ s, V., Forni, L., M a´ rquez, F., Mart ´ı nez-Triguero, J.,
�
1
� 1
7
7 kJ mol has been obtained. Values of 42 kJ mol over
and Mascotti, D., J. Catal. 179, 451 (1998).
17. Venuto, P. B., and Landis, P. S., Adv. Catal. 18, 259 (1968).
18. Coughlan, B., and Keane, M. A., J. Catal. 138, 164 (1992).
9. Derouane, E. G., He, H., Derouane-AbdHami, S. B., and Ivanova,
I. I., Catal. Lett. 58, 1 (1999). Wichterlov a´ , B., and Cejka, J., J. Catal.
146, 523 (1994).
�
1
an HM zeolite (32), 75 kJ mol over an Fe-FMI zeolite
39), and 50–67 kJ mol (40) for CaY and LaY zeolites
have been reported for benzene isopropylation to cumene.
The value obtained in the present work was close to the
highest value of activation energy reported.
�
1
(
1
20. Bentham, M. F., Gadja, G. J., Jensen, R. H., and Zinnen, H. A., in
Proceeding of the DGMK Conference, Catalysis on Solid Acids and
“
Bases, Berlin, Germany, March 14–15, 1996” (J. Weitkamp and B.
L u¨ cke, Eds.), p. 155, 1996.
CONCLUSION
2
2
1. Pradhan, A. R., and Rao, B. S., Appl. Catal. A 106, 143 (1993).
2. Cavani, F., Arrigoni, V., and Bellussi, G., Eur. Pat. Appl. 432,814
A1, 1991. Innes, R. A., Zones, S. I., and Nacamuli, G. J., U.S. Patent
4,891,458, 1990. Smith, L. A., Jr., PCT Int. Appl. WO 9809929 A1,
MCM-22 zeolite is a good catalyst to carry out ben-
zene alkylation with short olefins. Comparing with a com-
mercial Beta zeolite, MCM-22 shows similar activity and
selectivity but better stability. The alkylation of benzene
on MCM-22 takes place mainly on the external surface,
which in this material is perfectly structured and formed by
1
998. Hendriksen, D. E., Lattner, J. R., and Janssen, M. J. G., PCT Int.
Appl. WO9809928 A2, 1998. Gadja, G. J., and Gajek, R. T., U.S. Patent
,723,710, 1995.
5
2
3. Bellussi, G., Pazzuconi, G., Perego, C., Girotti, G., and Terzoni, G.,
J. Catal. 157, 227 (1995).
�
0.7 � 0.7 nm cups where active sites are located. It appears
then that the higher the amount of those chalices, i.e., the 24. Perego, C., Amarilli, S., Millinni, R., Bellussi, G., Girotti, G., and
Terzoni, G., Microporous Mater. 6, 395 (1996).
5. Corma, A., Forn e´ s, V., Mart ´ı nez, A., and Sanz, J., ACS Symp. Ser. 446,
higher the external surface area, the better should be the
catalyst for carrying out the alkylation of benzene by either
propene or ethene.
From a full kinetic study it was possible to conclude that
the alkylation of benzene with propene on MCM-22 follows
an Eley–Rideal type mechanism in which benzene can also
compete by the active sites but its coverage is much lower
than that of propene.
2
17 (1988).
2
2
6. Venuto, P. B., Hamilton, L. A., and Landis, P. S., J. Catal. 5, 484 (1966).
7. Sastre, G., Catlow, C. R. A., and Corma, A., J. Phys. Chem. B 103, 5187
(1999).
2
2
3
3
8. Panmig, J., Qingying, W., Chao, Z., and Yanhe, X., Appl. Catal. A 91,
125 (1992).
9. Itoh, H., Miyamoto, A., andMurakami, Y., J. Catal. 64, 284(1980). Itoh,
H., Hattori, T., Suzuki, K., and Murakami, Y., J. Catal. 79, 21 (1983).
0. Weitkamp, J. (Int. Symp. in Zeolite Catalysis, Siofok, Hungary), Acta
Phys. Chem. 217 (1985).
1. Morita, Y., Matsumoto, H., Kimura, T., Kato, F., and Takayasu, M.,
Bull. Jpn. Pet. Inst. 15(1), 37 (1973).
REFERENCES
1
2
3
. Pujado, P. R., Salazar, J. R., and Berger, C. V., Hydrocarbon Process
5
5, 91 (1976).
32. Becker, K. A., Karge, H. G., and Streubel, W.-D., J. Catal. 28, 403
. Bentham, M. F., Gajda, G. J., Jensen, R. H., and Zinnen, H. A., Erd o¨ l
Erdgas Kohle 113, 84 (1997).
. Corma, A., Chem. Rev. 95, 559 (1995).
(1973).
33. Panagiotis, G. S., and Ruckenstein, E., Ind. Eng. Chem. Res. 43, 1517
(1995).