leaching of Pd occurred. We have obtained only 3% styrene
conversion even after 25 min reaction time when the supernatant
was stirred by itself after removing the SiO2/Pd–NP/Porous-SiO2
nanospheres from it. From this result, it is clear that the nano-
porous silica shell has effectively stabilized and prevented the
Pd–NP from aggregation and leaching while at the same time
leaving the Pd nanoparticles’ surfaces somewhat ‘‘naked’’ to give
high catalytic activity.
Notes and references
1 J. N. Park, A. J. Forman, W. Tang, J. Cheng, Y. S. Hu, H. Lin and
E. W. McFarland, Small, 2008, 4, 1694.
2 S. Ko and J. Jang, Angew. Chem., Int. Ed., 2006, 45, 7564.
3 Y. Jiang and Q. Gao, J. Am. Chem. Soc., 2006, 128, 716.
4 B. Yoon and C. M. Wai, J. Am. Chem. Soc., 2005, 127, 17174.
5 R. Narayanan and M. A. EI-Sayed, J. Catal., 2005, 234, 348.
6 T. Wu, T. Jiang, B. Hu, B. Han, J. He and X. Zhou, Green Chem.,
2009, 11, 798.
7 J. Lee, J. C. Park and H. Song, Adv. Mater., 2008, 20, 1523.
€
8 P. M. Arnal, M. Comotti and F. Schuth, Angew. Chem., Int. Ed.,
2006, 118, 8404.
9 S. Ikeda, S. Ishino, T. Harada, N. Okamoto, T. Sakata, H. Mori,
S. Kuwabata, T. Torimoto and M. Matsumura, Angew. Chem., Int.
Ed., 2006, 45, 7063.
10 R. W. J. Scott, C. Sivadinarayana, O. M. Wilson, Z. Yan,
D. W. Goodman and R. M. Crooks, J. Am. Chem. Soc., 2005, 127,
1380.
11 H. Song, R. M. Rioux, J. D. Hoefelmeyer, R. Komor, K. Niesz,
M. Grass, P. Yang and G. A. Somorjai, J. Am. Chem. Soc., 2006,
128, 3027.
12 R. Narayanan and M. A. El-Sayed, J. Am. Chem. Soc., 2003, 125,
8340.
13 G. Budroni and A. Corma, Angew. Chem., Int. Ed., 2006, 118, 3406.
14 M. Comotti, C. D. Pina, R. Matarrese and M. Rossi, Angew. Chem.,
Int. Ed., 2004, 116, 5936.
15 R. Narayanan and M. A. El-Sayed, J. Am. Chem. Soc., 2004, 126,
7194.
In addition to hydrogenation of a series of alkenes, the
nanospheres are proved to catalyze the Heck coupling reaction
between styrene and iodobenzene forming trans-stilbene with
ꢀ100% yield in 12 h (Figure S8†). Furthermore, the catalyst
showed good recyclability in the Heck coupling reaction as well.
This nanocatalyst exhibits several advantages in comparison
to conventional catalysts embedded in bulk supports.49 Firstly,
a large number of Pd–NP was incorporated within a given silica
support to impart the sample with a high catalytic activity per
unit mass. Secondly, the nanoporous silica shell around Pd–NP
not only provided reactants to reach to the surface of Pd–NP but
also hindered their aggregation with neighboring Pd–NP.
Finally, the reported nanosphere catalyst could easily be
dispersed in reaction solutions while at the same time recoverable
with simple centrifugation and recycling after reactions with no
significant loss of their catalytic activity.
16 A. K. Diallo, C. Ornelas, L. Salmon, J. R. Aranzaes and D. Astruc,
Angew. Chem., Int. Ed., 2007, 46, 8644.
17 M. B. Thathagar, J. E. ten Elshof and G. Rothenberg, Angew. Chem.,
Int. Ed., 2006, 45, 2886.
Conclusions
18 V. Mazumder and S. Sun, J. Am. Chem. Soc., 2009, 131, 4588.
19 S. Xu and Q. Yang, J. Phys. Chem. C, 2008, 112, 13419.
20 Y. Hong and A. Sen, Chem. Mater., 2007, 19, 961.
21 J. Ge, Q. Zhang, T. Zhang and Y. Yin, Angew. Chem., Int. Ed., 2008,
47, 8924.
22 S. H. Joo, J. Y. Park, C. Tsung, Y. Yamada, P. Yang and
G. A. Somorjai, Nat. Mater., 2009, 8, 126.
23 M. Shokouhimehr, Y. Piao, J. Kim, Y. Jang and T. Hyeon, Angew.
Chem., Int. Ed., 2007, 46, 7039.
In summary, we have synthesized SiO2/Pd–NP/Porous-SiO2 core-
shell-shell type nanospheres and nanocatalysts which contain silica
core and nanoporous silica shell with octahedral shaped Pd
nanoparticles sandwiched in between the two. The silica core was
€
synthesized by the Stober method where as the outer nanoporous
silica shell was synthesized by the sol–gel process followed by
controlled etching in basic solution. This silica shell was permeable
enough to let reactants reach to the Pd nanoparticles while at the
same time protected them from aggregation. The resulting SiO2/
Pd–NP/Porous-SiO2 core-shell-shell nanosphere showed excellent
catalytic activity and selectivity in hydrogenation reactions of
phenylacetylene, nitrobenzene, and two different types of olefins at
room temperature and ambient H2 pressure as well as in C–C bond
coupling reaction. This high catalytic activity and selectivity, even
at room temperature, was a result of the assembly of 5 nm size
octahedral shaped multiple Pd–NP assembled within high surface
area core-shell-shell type nanostructured material. Furthermore,
the structure of the material allowed Pd–NP to remain stable, even
after being recycled multiple times, while maintaining their high
catalytic activity. Investigation of the potential advantages of the
materials as a stable recyclable catalyst to high-temperature reac-
tions is currently in progress. We expect that these novel Pd-based
heterogeneous nanocatalysts may find more applications in many
other Pd-catalyzed reactions. Furthermore, the synthetic method
can be extended to generate other metallic and metal oxide based
nanosphere materials and efficient nanocatalysts.
24 J. Y. Kim, S. B. Yoon and J. S. Yu, Chem. Commun., 2003, 790.
25 Y. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai
and A. Paul Alivisatos, Science, 2004, 304, 711.
26 K. Yu, Z. Wu, Q. Zhao, B. Li and Y. Xie, J. Phys. Chem. C, 2008, 112,
2244.
27 L. M. Liz-Marzan, M. Giersig and P. Mulvaney, Langmuir, 1996, 12,
4329.
28 R. I. Nooney, T. Dhanasekaran, Y. Chen, R. Josephs and
A. E. Ostafin, Adv. Mater., 2002, 14, 529.
€
29 W. Stober, A. Fink and E. Bohn, J. Colloid Interface Sci., 1968, 26, 62.
30 R. Narayanan and M. A. El-Sayed, J. Phys. Chem. B, 2005, 109,
12663.
31 B. Lim, Y. Xiong and Y. Xia, Angew. Chem., Int. Ed., 2007, 46, 9279.
32 M. Mahesh, J. A. Murphy and H. P. Wessel, J. Org. Chem., 2005, 70,
4118.
ꢀ
ꢀ
33 I. Pastoriza-Santos, D. Gomez, J. Perez-Juste, L. M. Liz-Marzan and
P. Mulvaney, Phys. Chem. Chem. Phys., 2004, 6, 5056–5060.
34 Y. Lu, Y. Yin, Z. Y. Li and Y. Xia, Nano Lett., 2002, 2, 785.
35 Q. Zhang, T. Zhang, J. Ge and Y. Yin, Nano Lett., 2008, 8, 2867.
36 K. K. Sharma and T. Asefa, Angew. Chem., Int. Ed., 2007, 46, 2879.
37 A. Anan, K. K. Sharma and T. Asefa, J. Mol. Catal. A: Chem., 2008,
288, 1.
38 Y. Xiong, J. M. McLellan, J. Chen, Y. Yin, Z. Y. Li and Y. Xia, J.
Am. Chem. Soc., 2005, 127, 17118.
39 Y. Lan, M. Zhang, W. Zhang and L. Yang, Chem.–Eur. J., 2009, 15,
3670.
40 R. R. Deshmukh, J. W. Lee, U. S. Shin, J. Y. Lee and C. E. Song,
Angew. Chem., Int. Ed., 2008, 47, 8615.
41 J. Huang, T. Jiang, H. Gao, B. Han, Z. Liu, W. Wu, Y. Chang and
G. Zhao, Angew. Chem., Int. Ed., 2004, 43, 1397.
42 C. M. Park, M. S. Kwon and J. Park, Synthesis, 2006, 3790.
43 O. M. Wilson, M. R. Knecht, J. C. Garcia-Martinez and
R. M. Crooks, J. Am. Chem. Soc., 2006, 128, 4510.
Acknowledgements
We gratefully acknowledge the financial assistance by the US
National Science Foundation (NSF), CAREER Grant No.
CHE-064534 and NSF DMR-0804846 for this work.
7840 | J. Mater. Chem., 2010, 20, 7834–7841
This journal is ª The Royal Society of Chemistry 2010