Journal of the American Chemical Society
Page 4 of 12
In addition to Lewis acidic character of the appended borane
units, they also impose increased steric profiles, compared to a
(2) (a) Cook, S. A.; Borovik, A. S. Acc. Chem. Res. 2015, 48, 2407. (b)
Crabtree, R. H. New J. Chem. 2011, 35, 18. (c) Grotjahn, D. B. Dalton
Trans. 2008, 6497.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
CH unit, and the distinct steric environment may alternatively
3
(3) (a) Khusnutdinova, J. R.; Milstein, D. Angew. Chem., Int. Ed. 2015,
determine selectivity. To evaluate whether a similar steric effect
5
4, 12236. (b) Ikariya, T.; Shibasaki, M. Bifunctional Molecular Catalꢀ
influences the preference for a single stereoisomer, alkyne hydroꢀ
ysis; Springer: New York, 2011. (c) Muniz, K. Angew. Chem., Int. Ed.
2005, 44, 6622. (d) Kuzu, I.; Krummenacher, I.; Meyer, J.; Armbruster,
F.; Breher, F. Dalton Trans. 2008, 5836. (e) Li, Y.; Hou, C.; Jiang, J.;
Zhang, Z.; Zhao, C.; Page, A. J.; Ke, Z. ACS Catal. 2016, 6, 1655.
(4) (a) Lin, T.ꢀP.; Peters, J. C. J. Am. Chem. Soc. 2013, 135, 15310. (b)
Boone, M. P.; Stephan, D. W. J. Am. Chem. Soc. 2013, 135, 8508. (c)
Harman, W. H.; Peters, J. C. J. Am. Chem. Soc. 2012, 134, 5080.
i
genation was examined using HRu(b Prpi)(PPh ) (10), which
3
2
contains isopropyl groups that are more sterically encumbering
around the Ru center than the orthoꢀsubstituents in 1–7. For diꢀ
phenylacetylene hydrogenation, the product distribution and conꢀ
version were strikingly similar to that of 1 (52% selectivity, 65%
conversion, Table 1, entry 8). In addition to this ligand variation,
the Lewis acidic properties of the borane unit in 5 were effectively
quenched by performing catalytic hydrogenation reactions of
(5) (a) Moore, C. M.; Bark, B.; Szymczak, N. K. ACS Catal. 2016, 6,
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
981. (b) Fujita, K.ꢀi.; Tanaka, Y.; Kobayashi, M.; Yamaguchi, R. J.
Am. Chem. Soc. 2014, 136, 4829. (c) Wang, W.ꢀH.; Hull, J. F.; Muckꢀ
erman, J. T.; Fujita, E.; Himeda, Y. Energy Environ. Sci. 2012, 5, 7923.
(6) (a) Braunschweig, H.; Dewhurst, R. D. Dalton Trans. 2011, 40,
549. (b) Amgoune, A.; Bourissou, D. Chem. Commun. 2011, 47, 859.
(c) Alcaraz, G.; Grellier, M.; SaboꢀEtienne, S. Acc. Chem. Res. 2009,
42, 1640. (d) Drover, M. W.; Schafer, L. L.; Love, J. A. Angew. Chem.,
Int. Ed. 2016, 55, 3181. (e) Cassen, A.; Gloaguen, Y.; Vendier, L.;
Duhayon, C.; PobladorꢀBahamonde, A.; Raynaud, C.; Clot, E.; Alcaraz,
G.; SaboꢀEtienne, S. Angew. Chem., Int. Ed. 2014, 53, 7569. (f) Barꢀ
nett, B. R.; Moore, C. E.; Rheingold, A. L.; Figueroa, J. S. J. Am.
Chem. Soc. 2014, 136, 10262. (g) Ostapowicz, T. G.; Merkens, C.;
Hoelscher, M.; Klankermayer, J.; Leitner, W. J. Am. Chem. Soc. 2013,
diphenylacetylene in the presence of 10 mol% NEt (Table 1,
3
entry 7). Notably lower conversion (50%) and selectivity (78%)
for Z-8 were obtained, which further highlights the role of the
appended Lewis acid to promote high activity and Zꢀselectivity.
Collectively, these experiments provide clear support that the
origin of selective alkyne reduction arises from the acidic characꢀ
ter of the pendent boranes, rather than an increased steric profile.
In conclusion, we have developed a new class of bifunctional
Ru complexes with appended Lewis acidic BR groups. This work
2
demonstrates that the Lewis acidic properties of the boranes in the
secondary coordination environment can be used to modulate the
reactivity of the Ru–H and turn on metal–ligand cooperativity for
hydrogenation catalysis. Of particular note, higher reaction rate,
conversion, and selectivity were noted for the Zꢀselective semiꢀ
hydrogenation of alkynes when using the bifunctional complex 5
appended with the most Lewis acidic borane. Comparison with
the unfunctionalized complexes containing only inert –CH3
groups illustrates the critical roles of the Lewis acids in the secꢀ
ondary coordination sphere to synergistically mediate and regulate
alkyne hydrogenation by (1) facilitating H–H heterolysis, (2) staꢀ
bilizing the hydride intermediate via the formation of a Ru–H–B
bridge, and (3) selectively reducing alkynes over alkenes. Because
installation of the pendent groups occurred at the last step, this
strategy may be exploited as a versatile protocol to access a large
variety of appended functional groups (Lewis acids and bases)
with different steric and electronic properties. Future efforts will
explore the incorporation of pendent acidic and basic groups to
allow further control over the activity and selectivity of metalꢀ
based catalysis and to activate a variety of small molecules.
1
35, 2104. (h) Masuda, Y.; Hasegawa, M.; Yamashita, M.; Nozaki, K.;
Ishida, N.; Murakami, M. J. Am. Chem. Soc. 2013, 135, 7142. (i)
Podiyanachari, S. K.; Froehlich, R.; Daniliuc, C. G.; Petersen, J. L.;
MueckꢀLichtenfeld, C.; Kehr, G.; Erker, G. Angew. Chem., Int. Ed.
2
012, 51, 8830. (j) Hasegawa, M.; Segawa, Y.; Yamashita, M.; Nozaki,
K. Angew. Chem., Int. Ed. 2012, 51, 6956. (k) Buil, M. L.; Cardo, J. J.
F.; Esteruelas, M. A.; Fernandez, I.; Onate, E. Organometallics 2015,
34, 547. (l) Hesp, K. D.; Kannemann, F. O.; Rankin, M. A.; McDonald,
R.; Ferguson, M. J.; Stradiotto, M. Inorg. Chem. 2011, 50, 2431. (m)
Miller, A. J. M.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 2008,
1
30, 11874.
(7) (a) Dahl, E. W.; Szymczak, N. K. Angew. Chem., Int. Ed. 2016, 55,
3101. (b) Moore, C. M.; Szymczak, N. K. Chem. Sci. 2015, 6, 3373. (c)
Geri, J. B.; Szymczak, N. K. J. Am. Chem. Soc. 2015, 137, 12808. (d)
Tutusaus, O.; Ni, C.; Szymczak, N. K. J. Am. Chem. Soc. 2013, 135,
3403.
(8) (a) Tseng, K.ꢀN. T.; Rizzi, A. M.; Szymczak, N. K. J. Am. Chem.
Soc. 2013, 135, 16352. (b) Tseng, K.ꢀN. T.; Lin, S.; Kampf, J. W.;
Szymczak, N. K. Chem. Commun. 2016, 52, 2901. (c) Tseng, K.ꢀN. T.;
Kampf, J. W.; Szymczak, N. K. ACS Catal. 2015, 5, 5468.
(9) See SI for alkene hydrogenation.
(10) We note that H–B coupling can be broad and not always observaꢀ
ble by NMR spectroscopy, see reference 6g.
ASSOCIATED CONTENT
Supporting Information
(
(
11) Sivaev, I. B.; Bregadze, V. I. Coord. Chem. Rev. 2014, 270, 75.
12) (a) Emslie, D. J. H.; Cowie, B. E.; Kolpin, K. B. Dalton Trans.
2
012, 41, 1101. (b) Chiu, C.ꢀW.; Gabbai, F. P. Angew. Chem., Int. Ed.
Experimental procedures and characterization data. This material
is available free of charge at http://pubs.acs.org.
2007, 46, 6878. (c) Cook, K. S.; Piers, W. E.; Hayes, P. G.; Parvez, M.
Organometallics 2002, 21, 2422.
(13) Gunanathan, C.; Milstein, D. Acc. Chem. Res. 2011, 44, 588.
(14) (a) Crossley, I. R.; Foreman, M. R. S. J.; Hill, A. F.; Owen, G. R.;
AUTHOR INFORMATION
White, A. J. P.; Williams, D. J.; Willis, A. C. Organometallics 2008,
27, 381.
Corresponding Author
(
15) Gloaguen, Y.; BenacꢀLestrille, G.; Vendier, L.; Helmstedt, U.;
Clot, E.; Alcaraz, G.; SaboꢀEtienne, S. Organometallics 2013, 32,
868.
(16) Note that PPh
Email: *nszym@umich.edu
4
ACKNOWLEDGMENT
3
dissociation from 1 is fast, see reference 8c. Thus,
the active catalyst coordination environment is analogous to 5.
(17) The most common semiꢀhydrogenation catalyst is Lindlar’s cataꢀ
lyst, which favors the Zꢀisomer. However, this catalyst also promotes
E/Z isomerization over time, and has considerable variability in the acꢀ
tivity and selectivity between batches. For further discussion, see Ulan,
J. G.; Maier, W. F. J. Org. Chem. 1987, 52, 3132.
Acknowledgment is made to the NSFꢀCAREER (CHEꢀ1350877),
the University of Michigan Department of Chemistry, and the
National Science Foundation (CHEꢀ0840456) for Xꢀray instruꢀ
mentation. N.K.S. is an Alfred P. Sloan Research Fellow and
Camille Dreyfus Scholar.
(18) Competition experiments between 1ꢀoctyne and 1ꢀoctene demonꢀ
strated that 3 favored alkyne insertion while 1 showed no preference for
either substrate, see SI for further details.
(19) We note that the reduction of the nitrile group was observed when
the reaction was allowed to continue for longer than 2 h at 80 °C.
REFERENCES
(1) P. W. N. M. van Leeuwen, P, W. N. M., Chadwick, J. C. Homogeꢀ
neous Catalysts; WileyꢀVCH: Weinheim, Germany, 2011.
ACS Paragon Plus Environment