Arylthiols as EnVironmentally Benign Radical Reducing Agents
9
,10
phosphates
efficient reducing agents possessing metal-hydrogen bonds,
18
have been developed, and a search for new and
TABLE 1. Reduction of Tellanylglycoside 1 with Various Thiols
11-13
14
15
16,17
such as Ge-H,
Ga-H, In-H, Zr-H,
and Cr-H,
1
9,20
is ongoing.
Thiols are excellent hydrogen donors in radical reactions, but
their use in the reduction of organohalogens has so far been
unsuccessful due to the poor reactivity of thiyl radicals toward
a
run
RSH
PhSH
temp (°C)
yield (%)
2
1
1
2
3
4
5
6
7
8
9
80
80
80
80
80
80
80
80
80
100
85
88 (100)
85 (100)
79 (100)
74 (100)
83 (100)
72 (100)
56 (100)
79 (100)
67 (100)
94 (100)
98 (100)
the abstraction of halogen atoms (step 1). Therefore, thiols
can reduce organohalogens only in the presence of silanes as
p-MeC6H4SH
p-MeOC6H4SH
p-HOC6H4SH
p-ClC H SH
2
2-24
25,26
polarity reversal catalysts
or by using silylthiols,
thus
their synthetic applications have been limited.
In contrast, we have recently reported that benzenethiol is
6
4
p-CF3C6H4SH
p-NO2C6H4SH
C6F5SH
n-C8H17SH
PhSH
able to reduce tellanylglycoside 1 with high efficiency under
27
photoirradiation. The reaction of organostibines and bismuth-
b
ines with benzenethiol to give phenylthiostibines and bismuth-
10
2
8
c
ines has also been reported. Although the fate of the carbon
residues derived from the organostibines and bismuthines was
not described in this study, it is probable that the reduction
products were formed.
11
PS-thiophenol
a
Determined by 1H NMR. The number in parentheses is the yield
based on the amount of 1 converted. PhSH (2 equiv) was used in the
presence of ACHN [1,1-azobis(cyclohexane-1-carbonitrile)] instead of
AIBN. The 10-h half-life decomposition temperatures of ACHN and
AIBN are 88 and 65 °C in toluene, respectively. Five equivalents of
polymer-supported thiophenol [3-(3-mercaptophenyl)propaneamidomethyl po-
lystyrene] was used.
b
Despite these results, the synthetic efficiencies of thiols as
reducing agents for organoheteroatom compounds are still
unknown. These studies prompted us to examine the versatility
of the thiol reduction of various organoheteroatom compounds
c
2
9-48
49,50
including organotellurides,
organostibines,
and orga-
5
1
nobismuthines under thermal conditions. These heteroatom
compounds have recently been recognized as excellent precur-
sors of carbon-centered radicals for the precision synthesis of
both small molecules and macromolecules. The development
of mild and environmentally benign reducing agents would
greatly facilitate the use of these heteroatom compounds in
organic and polymer synthesis.
(
9) Leca, D.; Fensterbank, L.; Lac oˆ te, E.; Malacria, M. Chem. Soc. ReV. 2005,
4, 858–865.
10) Barton, D. H. R.; Jang, D. O.; Jaszberenyi, J. C. J. Org. Chem. 1983,
8, 6838–6842.
3
5
(
(
(
11) Chatgilialoglu, C.; Ballestri, M. Organometallics 1995, 14, 5017–5018.
12) Chatgilialoglu, C.; Ballestri, M.; Escudie, J.; Pailhous, I. Organometallics
1
999, 18, 2395–2397.
13) Nakamura, T.; Yorimitsu, H.; Shinokubo, H.; Oshima, K. Bull. Chem.
(
Soc. Jpn. 2001, 74, 747–752.
14) Mikami, S.; Fujita, K.; Nakamura, T.; Yorimitsu, H.; Shinokubo, H.;
Matsubara, S.; Oshima, K. Org. Lett. 2001, 3, 1853–1855.
15) Inoue, K.; Sawada, A.; Shibata, I.; Baba, A. J. Am. Chem. Soc. 2002,
24, 906–907.
16) Fujita, K. N., T.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2001,
23, 3137–3138.
17) Fujita, K. Y. H.; Oshima, K. Bull. Chem. Soc. Jpn. 2004, 77, 1727–
736.
(
Results and Discussion
(
The substituent effect of thiols in the reduction was examined
with tellanylglycoside 1 as a model substrate (Table 1). A
solution of 1, AIBN (0.1 equiv), and benzenethiol (1.4 equiv)
was heated in toluene at 80 °C for 1 h, and the desired product
2 was formed in 88% yield together with a 12% recovery of 1,
1
1
1
1
(
(
(
18) Smith, D. M.; Pulling, M. E.; Norton, J. R. J. Am. Chem. Soc. 2007,
29, 770–771.
1
as determined by H NMR (Table 1, run 1). The reduction
(
(
19) Studer, A.; Amrein, S. Angew. Chem., Int. Ed. 2000, 39, 3080–3082.
20) Pozzi, D.; Scanlan, E. M.; Renaud, P. J. Am. Chem. Soc. 2005, 127,
proceeded smoothly in various nonpolar and polar solvents
including trifluoromethylbenzene, dimethyl formamide, propi-
onitrile, and 2-butanone. Arylthiols with both electron-donating
and withdrawing substituents at the para-position of the aryl
group tended to decrease the reactivity more than benzenethiol
1
4204–14205.
21) Sulfur-Centered Radicals; Bertrand, M. P., Ferreri, C., Eds.; WILEY-
VCH: Weinheim, Germany, 2001; Vol. 2.
(
(
22) Roberts, B. P. Chem. Soc. ReV. 1999, 28, 25–35.
(23) Allen, R. P.; Roberts, B. P.; Wills, C. R. J. Chem. Soc., Chem. Commun.
1
989, 1387–1388.
24) Cole, S. J.; Kirwan, J. N.; Roberts, B. P.; Wills, C. R. J. Chem. Soc.,
Perkin Trans. 1 1991, 103–112.
25) Ballestri, M.; Chatgilialoglu, C.; Seconi, G. J. Organomet. Chem. 1991,
08, C1–C4.
26) Daroszewski, J.; Lusztyk, J.; Degueil, M.; Navarro, C.; Maillard, B.
J. Chem. Soc., Chem. Commun. 1991, 586–587.
27) Yamago, S.; Miyazoe, H.; Yoshida, J. Tetrahedron Lett. 1999, 40, 2339–
342.
(
(39) Berlin, S.; Ericsson, C.; Engman, L. J. Org. Chem. 2003, 68, 8386–
8396.
(40) Ericsson, C.; Engman, L. J. Org. Chem. 2004, 69, 5143–5146.
(41) Kim, S.; Song, H.; Choi, T.; Yoon, J. Angew. Chem., Int. Ed. 2001, 40,
2524–2526.
(42) Kim, S.; Song, H. Synlett 2002, 2110–2112.
(43) Yamago, S.; Iida, K.; Yoshida, J. J. Am. Chem. Soc. 2002, 124, 2874–
2875.
(
4
(
(
2
(
(
(
(
(
28) Davies, A. G.; Hook, S. C. W. J. Chem. Soc. B 1970, 4, 735–737.
29) Yamago, S. Synlett 2004, 1875–1890.
(44) Yamago, S.; Iida, K.; Yoshida, J. J. Am. Chem. Soc. 2002, 124, 13666–
13667.
30) Yamago, S. J. Polym. Sci., Part A: Polym. Chem. 2005, 44, 1–12.
31) Yamago, S. Proc. Jpn. Acad., Ser. B 2005, 81, 117–128.
32) Clive, D. L. J.; Chittattu, G. J.; Farina, V.; Kiel, W. A.; Menchen, S. M.;
(45) Goto, A.; Kwak, Y.; Fukuda, T.; Yamago, S.; Iida, K.; Nakajima, M.;
Yoshida, J. J. Am. Chem. Soc. 2003, 125, 8720–8721.
(46) Yusa, S.; Yamago, S.; Sugahara, M.; Morikawa, S.; Yamamoto, T.;
Morishima, Y. Macromolecules 2007, 40, 5907–5915.
(47) Sugihara, Y.; Kagawa, Y.; Yamago, S.; Okubo, M. Macromolecules
2007, 40, 9208–9211.
Russell, C. G.; Singh, A.; Wong, C. K.; Curtis, N. J. J. Am. Chem. Soc. 1980,
02, 4438–4447.
1
(33) Barton, D. H. R.; Ramesh, M. J. Am. Chem. Soc. 1990, 112, 891–892.
(34) Barton, D. H. R.; G e´ ro, S. D.; Quiclet-Sire, B.; Samadi, M.; Vincent,
C. Tetrahedron 1991, 47, 9383–9392.
35) Han, L.-B.; Ishihara, K.; Kambe, N.; Ogawa, A.; Ryu, I.; Sonoda, N.
J. Am. Chem. Soc. 1992, 114, 7591–7592.
36) Crich, D.; Chen, C.; Hwang, J.-T.; Yuan, H.; Papadatos, A.; Walter,
R. I. J. Am. Chem. Soc. 1994, 116, 8937–8951.
(48) Kayahara, E.; Yamago, S.; Kwak, Y.; Goto, A.; Fukuda, T. Macromol-
ecules 2008, 41, 527–529.
(49) Yamago, S.; Ray, B.; Iida, K.; Yoshida, J.; Tada, T.; Yoshizawa, K.;
Kwak, Y.; Goto, A.; Fukuda, T. J. Am. Chem. Soc. 2004, 126, 13908–13909.
(50) Ray, B.; Kotani, M.; Yamago, S. Macromolecules 2006, 39, 5259–5265.
(51) Yamago, S.; Kayahara, E.; Kotani, M.; Ray, B.; Kwak, Y.; Goto, A.;
Fukuda, T. Angew. Chem., Int. Ed. 2007, 46, 1304–1306.
(
(
(
37) Lucas, M. A.; Schiesser, C. H. J. Org. Chem. 1996, 61, 5754–5761.
38) Engman, L.; Gupta, V. J. Org. Chem. 1997, 62, 157–173.
(
J. Org. Chem. Vol. 73, No. 18, 2008 7301