P. Pongrácz et al. / Journal of Organometallic Chemistry 696 (2011) 2234e2237
2237
[2] I. Ojima, C.-Y. Tsai, M. Tzamarioudaki, D. Bonafoux, in: L.E. Overman, et al.
(Eds.), The Hydroformylation Reaction, Organic Reactions, vol. 56, J. Wiley &
Sons, Inc., 2000, pp. 1e354 (Chapter 1).
[3] F. Agbossou, F. J-Carpentier, A. Mortreux, Chem. Rev. 95 (1995) 2485e2506
and references cited therein.
regioselectivity was more pronounced using 4-chlorostyrene, i.e.
78% and 42% branched selectivity was obtained at 50 ꢀC and
100 ꢀC, respectively (entries 8 and 9).
Although the present catalytic studies are not directed towards
mechanistic investigations, it could be stated that the electron-
withdrawing chloride substituent in 4-position has a remarkable
influence on the styrene insertion into platinumehydride bond.
Unlike the electron-releasing groups in the 4-position of styrene,
the CO insertion seems to be favoured at higher temperature
resulting in higher aldehyde selectivity (Table 2, entry 9). Further-
more, the formation of the platinume(branched alkyl) over the
platinume(linear alkyl) intermediate is highly preferred at 50 ꢀC.
Consequently, its inserted product, the platinume(branched acyl)
intermediate leads to the prevailing formation of 2-(4-chlor-
ophenyl)propanal (Table 2, entry 8).
[4] S. Gladiali, J.C. Bayón, C. Claver, Tetrahedron: Asymmetry 6 (1995) 1453e1474
and references cited therein.
[5] T. Hayashi, M. Tanaka, I. Ogata, J. Mol. Catal. 6 (1979) 1e9.
[6] D. Neibecker, R. Réau, J. Mol. Catal. 57 (1989) 153e163.
[7] D. Neibecker, R. Réau, J. Mol. Catal. 53 (1989) 219e227.
[8] D. Neibecker, R. Réau, S. Lecolier, J. Org. Chem. 54 (1989) 5208e5210.
[9] C. Bergounhou, D. Neibecker, R. Réau, J. Chem. Soc., Chem. Commun. (1988)
1370e1371.
[10] D. Neibecker, R. Réau, Angew. Chem., Int. Ed. Engl. 28 (1989) 500e501.
[11] M. Tanaka, T. Hayashi, I. Ogata, Bull. Chem. Soc. Jpn. 50 (1977) 2351e2357.
[12] R.J. Thomson, W.R. Jackson, D. Haarburger, E.I. Klabunowsky, V.A. Pavlov, Aust.
J. Chem. 40 (1987) 1083e1106.
[13] G. Parrinello, R. Deschenaux, J.K. Stille, J. Org. Chem. 51 (1986) 4189e4195.
[14] Y. Kawabata, T.M. Suzuki, I. Ogata, Chem. Lett. (1978) 361e362.
[15] G. Consiglio, S.C.A. Nefkens, A. Borer, Organometallics 10 (1991) 2046e2051.
[16] J.K. Stille, H. Su, P. Brechot, G. Parrinello, L.S. Hegedus, Organometallics 10
(1991) 1183e1189.
[17] G. Consiglio, S.C.A. Nefkens, Tetrahedron: Asymmetry 1 (1990) 417e420.
[18] T. Hayashi, M. Tanaka, Y. Ikeda, I. Ogata, Bull. Chem. Soc. Jpn. 52 (1979)
2605e2608.
4. Conclusions
As a part of the systematic investigation of the ligand structure
ecatalytic reactivity (selectivity), five- and six-membered P-het-
erocycles were investigated as ligands in platinum-catalysed
hydroformylation of styrene. The preference of hydroformylation
over hydrogenation was observed by using all ligands. While the
application of monodentate ligands resulted in nearly equimolar
formation of the two formyl regioisomers, that of the bidentate
phosphinine-based ligands provided excellent branched regiose-
lectivity. The tetrahydrophosphinine-derived bidentate ligand
possessing the ‘most planar’ 6-membered P-heterocycle provided
the highest branched aldehyde selectivities using styrene.
[19] I. Tóth, C.J. Elsevier, J.G. de Vries, J. Bakos, W.J.J. Smeets, A.L. Speek,
J. Organomet. Chem. 540 (1997) 15e25.
[20] Y. Becker, A. Eisenstadt, J.K. Stille, J. Org. Chem. 45 (1980) 2145e2151.
[21] S. Gladiali, D. Fabbri, L. Kollár, J. Organomet. Chem. 491 (1995) 91e96.
}
[22] Z. Csók, G. Keglevich, G. Petocz, L. Kollár, J. Organomet. Chem. 586 (1999)
79e84.
[23] G. Keglevich, T. Chuluunbaatar, B. Dajka, K. Ludányi, G. Parlagh, T. Kégl,
}
L. Kollár, L. Toke, J. Organomet. Chem. 643/644 (2002) 32e38.
[24] G. Keglevich, T. Kégl, T. Chuluunbaatar, B. Dajka, P. Mátyus, B. Balogh, L. Kollár,
J. Mol. Catal. A: Chem. 200 (2003) 131e136.
[25] I. Odinets, T. Körtvélyesi, T. Kégl, L. Kollár, G. Keglevich, Transition Met. Chem.
32 (2007) 299e303.
[26] A. Kerényi, V. Kovács, T. Körtvélyesi, K. Ludányi, L. Drahos, G. Keglevich,
Heteroat. Chem. 21 (2010) 63e70.
[27] G. Keglevich, A. Kerenyi, B. Mayer, T. Körtvélyesi, K. Ludányi, Transition Met.
Chem. 33 (2008) 505e510.
[28] G. Keglevich, M. Sipos, T. Imre, K. Ludányi, D. Szieberth, L. Toke, Tetrahedron
Acknowledgements
}
Lett. 43 (2002) 8515e8518.
[29] G. Keglevich, M. Sipos, D. Szieberth, L. Nyulászi, T. Imre, K. Ludányi, L. Toke,
Tetrahedron 60 (2004) 6619e6627.
[30] G. Keglevich, M. Sipos, D. Szieberth, G. Petocz, L. Kollár, J. Organomet. Chem.
689 (2004) 3158e3162.
[31] G. Keglevich, M. Sipos, T. Körtvélyesi, T. Imre, L. Toke, Tetrahedron Lett. 46
The authors are grateful for the support from the Hungarian
Scientific Research Fund (OTKA CK78553 and K067679) and
Research Team on Innovation (SROP-4.2.2./08/1/2008-0011).
}
}
}
(2005) 1655e1658.
References
[32] T. Körtvélyesi, M. Sipos, G. Keglevich, Heteroat. Chem. 16 (2005) 520e524.
[33] G. Keglevich, M. Sipos, V. Ujj, T. Körtvélyesi, Lett. Org. Chem. 2 (2005) 608e612.
[34] L. Kollár, G. Keglevich, Chem. Rev. 110 (2010) 4257e4302 and references cited
therein.
[1] H. Brunner, W. Zettlmeier, Handbook of Enantioselective Catalysis with
Transition Metal Compounds. VCH, Weinheim, 1993.