mechanistic studies on the decarbonylation reaction to optimize
the identity of the catalyst such that lower temperatures (to
prevent in situ polymerization of the product, have lower energy
input and avoid deleterious side-reactions) and catalyst loadings
(to minimize cost) can be achieved.
12 J. Maul and A. G. Hu¨ls, in Ullmann’s Encyclopedia of Industrial
Chemistry, VCH, New York, 1992, vol. A21, pp 615-663.
13 P. W. Langvardt, in Ullmann’s Encyclopedia of Industrial Chemistry,
VCH, New York, 1992, vol. A1, pp 177-184.
14 R. McKenna and D. R. Nielsen, Metab. Eng., 2011, 13, 544–554.
15 (a) L. Craciun, G. P. Benn, J. Dewing, G. W. Schriver, W. J. Peer, B.
Siebenhaar, and U. Siegrist, US Pat. 2005/0222458, 2005.; (b) J. W.
Johnson and P. W. Uhlianuk, US Pat. 2009/045606, 2009.
16 (a) V. Calvino-Casilda, M. O. Guerrero-Pe´rez and M. A. Ban˜ares,
Green Chem., 2009, 11, 939–941; (b) M. O. Guerrero-Pe´rez and M.
A. Ban˜ares, ChemSusChem, 2008, 1, 511–513.
Acknowledgements
We thank the National Science Foundation (grant CHE-
0842654 to W.B.T. and M.A.H. and a Graduate Research
Fellowship under Grant No. 00006595 to M.O.M.) and the
Center for Sustainable Polymers, a National Science Foundation
supported Center for Chemical Innovation (CHE-1136607) for
financial support of this research.
17 J. Cason, Organic Syntheses, Wiley & Sons, New York, 1955, vol III,
pp 169.
18 R. Srinivasan, M. Uttamchandani and S. Q. Yao, Org. Lett., 2006,
8, 713–716.
19 L. V. Yerino, M. E. Osborn and P. S. Mariano, Tetrahedron, 1982, 38,
1579–1591.
20 Procedure adapted from: E. M. Simmons and J. F Hartwig, J. Am.
Chem. Soc., 2010, 132, 17092–17095.
21 Q. Guo, T. Miyaji, R. Hara, B. Shen and T. Takahashi, Tetrahedron,
2002, 58, 7327–7334.
22 J. J. Beauprez, M. De Mey and W. K. Soetaert, Process Biochem.,
2010, 45, 1103–1114; R. Gokarn, M. A. Eitemann and J. Sridhar,
ACS Symp. Ser., 1997, 666, 237–263; N. P. Nghiem, B. H. Davison,
B. E. Suttle and G. R. Richardson, Appl. Biochem. Biotechnol., 1997,
63–65, 565–576.
23 The separation of styrene from pivalic acid and pivalic anhydride
through fractional distillation was unsuccessful due to co-distillation
of styrene and pivalic acid and polymerization of styrene.
24 M. Kranenburg, P. C. J. Kamer, P. W. N. M. van Leeuwen, D. Vogt
and W. Keim, J. Chem. Soc., Chem. Commun., 1995, 2177–2178.
25 I. del R´ıo, N. Ruiz, C. Claver, L. A. van der Veen and P. W. N. M.
van Leeuwen, J. Mol. Catal. A: Chem., 2000, 39–48.
26 PdCl2, Piv2O, and ligands were left open to the atmosphere for 24
h. The hydrocinnamic acid was used as received without purification
and left open to the atmosphere for ~ 4 months.
27 PdCl2, Piv2O, and ligands were left open to the atmosphere for 48
h. The hydrocinnamic acid was used as received without purification
and left open to the atmosphere for ~ 4 months.
28 The bio-derived substrates levulinic acid, a- and b-angelica lactone
can be decarbonylated to methyl vinyl ketone over a solid acid catalyst
at high temperatures (290–500 ◦C), (see J. A. Dumesic, and R. M.
West, US Pat. 7 960 592, 2011) as well as photochemically (see O. L.
Chapman and C. L. McIntosh, J. Chem. Soc. D, 1971, 383–384) and
in the gas phase through a quartz tube at high temperatures (above
500 ◦C) (see; Z. P. Xu, C. Y. Mok, W. S. Chin, H. H. Huang, S. Li
and W. Huang, J. Chem. Soc., Perkin Trans. 2, 1999, 725–729).
Notes and references
1 H. Roper, Starch/Staerke, 2002, 54, 89–99.
2 J. Zakzeski, P. C. A. Bruijnincx, A. L. Jongerius and B. M.
Weckhuysen, Chem. Rev., 2010, 110, 3552–3599; A. Corma, S. Iborra
and A. Velty, Chem. Rev., 2007, 107, 2411–2502; G. W. Huber, S.
Iborra and A. Corma, Chem. Rev., 2006, 8, 4044–4098.
3 J. A. Miller, J. A. Nelson and M. P. Byrne, J. Org. Chem., 1993, 58,
18–20.
4 T. A. Foglia and P. A. Barr, J. Am. Oil Chem. Soc., 1976, 53, 737–741.
5 L. J. Gooben and N. Rodr´ıguez, Chem. Commun., 2004, 724–725.
6 J. Le Noˆtre, E. L. Scott, M. C. R. Franssen and J. P. N. Sanders,
Tetrahedron Lett., 2010, 51, 3712–3715.
7 S. Maetani, T. Fukuyama, N. Suzuki, D. Ishihara and I. Ryu,
Organometallics, 2011, 30, 1389–1394.
8 E. Penzel, in Ullmann’s Encyclopedia of Industrial Chemistry, VCH,
New York, 1992, vol. A21, pp 157-178.
9 Clostridia enzymatically produce hydrocinnamic acid from l-
phenylalanine. See C. W. Moss, M. A. Lambert and D. J. Goldsmith,
Appl. Microbiol., 1970, 19, 375–378; Hydrocinnamic acid can also
be prepared from cinnamaldehyde, a renewable resource. See A.
J. Muller, J. S. Bowers, J. R. I. Eubanks, C. C. Geiger and J. G.
Santobianco, US Pat., 5 939 581, 1999.
10 3-cyanopropanoic acid can be prepared from glutamic acid, a
biorenewable resource. See J. Le Noˆtre, E. L. Scott, M. C. R.
Franssen and J. P. N. Sanders, Green Chem., 2011, 13, 807–
809.
11 M. A. Bomgardner, Chem. Eng. News, 2011, 89(27), 55–63.
494 | Green Chem., 2012, 14, 490–494
This journal is
The Royal Society of Chemistry 2012
©