Table 5 TPR data for the catalysts
Peak I
Peak II
Catalyst
T/K
H2/mmol (g cat)ꢀ1
T/K
H2/mmol (g cat)ꢀ1
Total H2/mmol (g cat)ꢀ1
Cr6þ/mmol (g cat)ꢀ1
5%Cr/Al
5%Cr/Si
5%Cr–Al
5%Cr–Si
20%Cr/Al
20%Cr/Si
20%Cr–Al
–
–
0.050
626
696
0.564
0.185
0.489
0.549
0.780
0.248
0.743
0.564
0.235
0.489
0.549
0.780
0.322
0.743
0.376
0.157
0.326
0.366
0.520
0.215
0.495
548
–
–
650
687
607sha
666
612sh
–
–
–
–
547
–
0.074
–
a
sh: with shoulder peak at lower temperature.
References
1
2
3
4
E. H. Lee, Catal. Rev., 1973, 8, 285.
W. D. Mross, Catal. Rev. Sci. Eng., 1983, 25, 591.
F. Cavani and F. Trifiro, Appl. Catal., A, 1995, 133, 219.
W. S. Chang, Y. Z. Chen and B. L. Yang, Appl. Catal., A, 1995,
124, 221.
5
6
7
8
9
W. Oganowski, J. Hanuza and L. Kepinski, Appl. Catal., A, 1998,
171, 145.
S. Sato, M. Ohhara, T. Sodesawa and F. Nozaki, Appl. Catal.,
1988, 37, 207.
N. Mimura, I. Takahara, M. Saito, T. Hattori, K. Ohkuma and
M. Ando, Catal. Today, 1998, 45, 61.
M. Sugino, H. Shimada, T. Turuda, H. Miura, N. Ikenaga and T.
Suzuki, Appl. Catal., A, 1995, 121, 125.
T. Badstube, H. Papp, P. Kustrowski and R. Dziembaj, Catal.
Lett., 1998, 55, 169.
10 N. Mimura and M. Saito, Catal. Lett., 1999, 58, 59.
11 T. Badstube, H. Papp, R. Dziembaj and P. Kustrowski, Appl.
Catal., A, 2000, 204, 153.
12 Y. Sakurai, T. Suzaki, N. Ikenaga and T. Suzuki, Appl. Catal., A,
2000, 192, 281.
Fig. 10 The correlation between activity and the amount of Cr6þ in
the catalysts: (X) supported catalysts; (S) mixed oxide catalysts.
13 Y. Sakurai, T. Suzaki, K. Nakagawa, N. Ikenaga, H. Aota and T.
Suzuki, Chem. Lett., 2000, 526.
Conclusions
14 Y. Sakurai, T. Suzaki, K. Nakagawa, N. Ikenaga, H. Aota and T.
Suzuki, J. Catal., 2002, 209, 16.
15 V. P. Vislovskiy, J.-S. Chang, M.-S. Park and S.-E. Park, Catal.
Commun., 2002, 3, 227.
16 J.-N. Park, J. Noh, J.-S. Chang and S.-E. Park, Catal. Lett., 2000,
65, 75.
17 J. Noh, J.-S. Chang, J.-N. Park, K. Y. Lee and S.-E. Park, Appl.
Organometal. Chem., 2000, 14, 815.
18 N. Ikenaga, T. Tsuruda, K. Senma, T. Yamaguchi, Y. Sakurai
and T. Suzuki, Ind. Eng. Chem. Res., 2000, 39, 1228.
19 N. Mimura, I. Takahara, M. Saito, Y. Sasaki and K. Murata,
Catal. Lett., 2002, 78, 125.
20 P. Kustrowski, A. Rafalska-Lasocha, D. Majda, D. Tomaszewska
and R. Dziembaj, Solid State Ionics, 2001, 141–142, 237.
21 O. V. Krylov, A. K. Mamedov and S. R. Mirzabekova, Ind. Eng.
Chem. Res., 1995, 34, 474.
22 B. Grzybowska, J. Sloczynski, R. Grabowski, K. Wcislo,
A. Kozlowska, J. Stoch and J. Zielinski, J. Catal., 1998,
178, 687.
23 S. Wang, K. Murata, T. Hayakawa, S. Hamakawa and K. Suzuki,
Appl. Catal., A, 2000, 196, 1.
24 M. Cherian, M. S. Rao, A. M. Hirt, I. E. Wachs and G. Deo,
J. Catal., 2002, 211, 482.
25 W. Grunert, E. S. Shpiro, R. Feldhaus, K. Auders, G. V.
Autoshin and K. M. Minachev, J. Catal., 1986, 100, 138.
26 M. Cherian, M. S. Rao, W. T. Yang, J. M. Jehng, A. M. Hirt
and G. Deo, Appl. Catal., A, 2002, 233, 21.
27 C. M. Pradier, F. Rodrigues, P. Marcus, M. V. Landau, M. L.
Kaliya, A. Gutman and M. Herskowitz, Appl. Catal., B, 2000,
27, 73.
28 A. Zecchina, E. Garrone, G. Ghiotti, C. Morterra and E. Borello,
J. Phys. Chem., 1975, 79, 966.
The catalytic activities and selectivities of supported chromia
catalysts and chromia mixed oxide catalysts for EB dehydro-
genation in the presence of CO2 were compared. The selectivity
to styrene of all the catalysts is above 98.5%, but the activity of
the catalysts differs from one to another. The g-Al2O3 supported
chromia catalyst is much more active than the SiO2 supported
chromia catalyst, whereas the chromia–silica mixed oxide cata-
lyst is more active than the chromia–alumia mixed oxide cata-
lyst. The EB dehydrogenation activity increases with Cr2O3
loading up to a value slightly higher than the dispersion thres-
hold of Cr2O3 on the supports determined by XRD, that is 25
and 5 wt. % for the Cr/Al and Cr/Si supported catalysts,
respectively. On the other hand, the maximum activity of the
Cr–Al and Cr–Si mixed oxide catalysts appears at a Cr2O3 con-
tent of 25 and 20 wt. %, respectively, just before microcrystals of
Cr2O3 are detected in the XRD pattern of the catalyst. The
above results suggest that the dispersed chromia species in the
catalysts are more active than crystalline Cr2O3 for the reaction.
XPS and TPR studies reveal that both Cr6þ and Cr3þ are
present in the catalysts after calcination in air. A correlation
between the activity and the amount of Cr6þ species in the
fresh catalyst is observed, although discrepancies are signifi-
cant in some cases, indicating the presence of other possible
influencing factors. The high-oxidation-state Cr species are
probably the precursors of the active sites, which have a higher
activity for the dehydrogenation reaction.
29 A. Hakuli, M. E. Harlin, L. B. Backman and A. O. Krause,
J. Catal., 1999, 184, 349.
Acknowledgements
30 S. Rossi, M. Casaletto, G. Ferraris, A. Cimino and G. Minelli,
Appl. Catal., A, 1998, 167, 257.
31 A. Hakuli, A. Kytokivi, A. O. Krause and T. Suntola, J. Catal.,
1996, 161, 393.
The work was supported by the Chinese Major State Basic
Research Development Program (Grant 2000077507) and
Shanghai Research Institute of Petrochemical Technology.
T h i s j o u r n a l i s Q T h e R o y a l S o c i e t y o f C h e m i s t r y a n d t h e
C e n t r e N a t i o n a l d e l a R e c h e r c h e S c i e n t i f i q u e 2 0 0 4
378
N e w . J . C h e m . , 2 0 0 4 , 2 8 , 3 7 3 – 3 7 8