Full Papers
doi.org/10.1002/cctc.202001526
ChemCatChem
Catalytic alkenylation of benzene with ethylene and propylene
using Cu(X)2 {(X=OPiv (trimethylacetate) or OHex (2-ethyl hex-
anoate)}. Representative catalytic reactions are described here. A
[7] V. C. Chandrasekaran, in Rubber Seals for Fluid and Hydraulic Systems
Ed.: V. C. Chandrasekaran), William Andrew Publishing, Oxford, 2010,
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
(
pp. 57–69.
2
[8] J. K. F. Buijink, J.-P. Lange, A. N. R. Bos, A. D. Horton, F. G. M. Niele, in
Mechanisms in Homogeneous and Heterogeneous Epoxidation Catalysis
stock solution containing [Rh(η -C H ) (μ-OAc)] (0.011 mmol,
2
4 2
2
0.001 mol% of Rh relative to benzene) or equivalent amount solid
(
Ed.: S. T. Oyama), Elsevier, Amsterdam, 2008, pp. 355–371.
Rh catalysts:Rh/SiO , Rh/NC-HCl or Rh/NC-IWI, hexamethylbenzene
2
[9] C. Perego, P. Ingallina, Green Chem. 2004, 6, 274–279.
10] I. M. Gerzeliev, S. N. Khadzhiev, I.E. Sakharova, Pet. Chem. 2011, 51, 39–
(0.046 g, 0.23 mmol), and benzene (10 mL) was prepared in a
[
volumetric flask. Fisher-Porter reactors were charged with 10 mL
solution of benzene and copper salt (400 eq. per Rh, 4.4 mmol). The
vessels were sealed, pressurized with ethylene (40 psig) or
propylene (25 psig), and subsequently stirred and heated to 150°C.
For the catalysis with ethylene, the reactions were sampled every 2
or 4 h. With propylene, the reactions were sampled when the
solution turned yellowish brown and Cu oxidant was consumed.
48.
[11] E. H. Lee, Catal. Rev. 1974, 8, 285–305.
[12] J. Caro, M. Noack, in Advances in Nanoporous Materials, Vol. 1 (Ed.: S.
Ernst), Elsevier, 2010, pp. 1–96.
13] B. A. Vaughan, M. S. Webster-Gardiner, T. R. Cundari, T. B. Gunnoe,
Science 2015, 348, 421.
14] W. Zhu, T. B. Gunnoe, Acc. Chem. Res. 2020, 53, 920–936.
[15] N. I. Saper, A. Ohgi, D. W. Small, K. Semba, Y. Nakao, J. F. Hartwig, Nat.
Chem. 2020, 12, 276–283.
[16] N. A. Foley, J. P. Lee, Z. Ke, T. B. Gunnoe, T. R. Cundari, Acc. Chem. Res.
[
[
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
Catalytic alkenylation of toluene with 1-pentene using Cu(OHex)
2
2
(OHex (2-ethyl hexanoate)). A stock solution containing [Rh(η -
2
009, 42, 585–597.
[17] J. R. Andreatta, B. A. McKeown, T. B. Gunnoe, J. Organomet. Chem. 2011,
96, 305–315.
C H ) (μ-OAc)] (0.011 mmol, 0.001 mol% of Rh relative to benzene)
2
4 2
2
or equivalent amount solid Rh catalysts: Rh/SiO , Rh/NC-HCl or Rh/
2
6
NC-IWI, hexamethylbenzene (0.046 g, 0.23 mmol), and toluene
[
[
18] V. Ritleng, C. Sirlin, M. Pfeffer, Chem. Rev. 2002, 102, 1731–1770.
19] L. Ackermann, Chem. Rev. 2011, 111, 1315–1345.
[20] P. Gandeepan, T. Müller, D. Zell, G. Cera, S. Warratz, L. Ackermann,
Chem. Rev. 2019, 119, 2192–2452.
[21] A. T. Luedtke, K. I. Goldberg, Angew. Chem. Int. Ed. 2008, 47, 7694–7696;
Angew. Chem. 2008, 120, 7808–7810.
(
10 mL) was prepared in a volumetric flask. Fisher-Porter reactors
were charged with 10 mL solution of toluene, 1000 eq. 1-pentene
relative to Rh), copper salt (400 equiv. relative to per Rh, 4.4 mmol).
(
The vessels were sealed and pressurized with nitrogen (50 psig),
and subsequently stirred and heated to 150°C. For the catalysis
evaluation of supported Rh catalysts, the reactions were sampled
every 4 h. The products quantification is determined after hydro-
genation of the unsaturated products. The hydrogenation proce-
[
[
[
[
[
[
22] B. A. Suslick, A. L. Liberman-Martin, T. C. Wambach, T. D. Tilley, ACS
Catal. 2017, 7, 4313–4322.
23] B. A. McKeown, H. E. Gonzalez, T. B. Gunnoe, T. R. Cundari, M. Sabat, ACS
Catal. 2013, 3, 1165–1171.
40
dure was adopted from the literature and it was performed at
room temperature using 10% Pd/C catalyst under 100 psig hydro-
gen pressure.
24] Y. Fujiwara, I. Moritani, S. Danno, R. Asano, S. Teranishi, J. Am. Chem.
Soc. 1969, 91, 7166–7169.
25] B. A. McKeown, B. M. Prince, Z. Ramiro, T. B. Gunnoe, T. R. Cundari, ACS
Catal. 2014, 4, 1607–1615.
26] M. L. Clement, K. A. Grice, A. T. Luedtke, W. Kaminsky, K. I. Goldberg,
Chem. Eur. J. 2014, 20, 17287–17291.
27] S. Rej, N. Chatani, ACS Catal. 2018, 8, 6699–6706.
[28] D. Zell, M. Bursch, V. Müller, S. Grimme, L. Ackermann, Angew. Chem. Int.
Ed. 2017, 56, 10378–10382; Angew. Chem. 2017, 129, 10514–10518.
29] X. Jia, J. B. Gary, S. Gu, T. R. Cundari, T. B. Gunnoe, Isr. J. Chem. 2017, 57,
Acknowledgements
[
[
[
[
[
[
This work was primiarly supported by the U.S. Department of
Energy, Office of Basic Energy Sciences, Chemical Sciences, Geo-
sciences, and Biosciences Division (DE-SC0000776) and the UVA-
MAXNET Energy effort. CW acknowledges support from the U.S.
National Science Foundation, Award#: CBET-1802482 for the
preparation and characterization of Rh materials.
1037–1046.
30] E. E. Joslin, C. L. McMullin, T. B. Gunnoe, T. R. Cundari, M. Sabat, W. H.
Myers, Organometallics 2012, 31, 6851–6860.
31] S. A. Burgess, E. E. Joslin, T. B. Gunnoe, T. R. Cundari, M. Sabat, W. H.
Myers, Chem. Sci. 2014, 5, 4355–4366.
32] T. Matsumoto, D. J. Taube, R. A. Periana, H. Taube, H. Yoshida, J. Am.
Chem. Soc. 2000, 122, 7414–7415.
33] G. Bhalla, X. Y. Liu, J. Oxgaard, W. A. Goddard, R. A. Periana, J. Am. Chem.
Soc. 2005, 127, 11372–11389.
34] G. Bhalla, S. M. Bischof, S. K. Ganesh, X. Y. Liu, C. J. Jones, A. Borzenko,
I. I. I. W. J. Tenn, D. H. Ess, B. G. Hashiguchi, K. S. Lokare, C. H. Leung, J.
Oxgaard, I. I. I. W. A. Goddard, R. A. Periana, Green Chem. 2011, 13, 69–
Conflict of Interest
81.
The authors declare no conflict of interest.
[35] C. S. Sevov, J. F. Hartwig, J. Am. Chem. Soc. 2014, 136, 10625–10631.
[
36] B. A. Vaughan, S. K. Khani, J. B. Gary, J. D. Kammert, M. S. Webster-
Gardiner, B. A. McKeown, R. J. Davis, T. R. Cundari, T. B. Gunnoe, J. Am.
Chem. Soc. 2017, 139, 1485–1498.
[37] W. Zhu, Z. Luo, J. Chen, C. Liu, L. Yang, D. A. Dickie, N. Liu, S. Zhang, R. J.
Davis, T. B. Gunnoe, ACS Catal. 2019, 9, 7457–7475.
38] M. S. Webster-Gardiner, J. Chen, B. A. Vaughan, B. A. McKeown, W.
Schinski, T. B. Gunnoe, J. Am. Chem. Soc. 2017, 139, 5474–5480.
[39] J. Chen, R. J. Nielsen, W. A. Goddard, B. A. McKeown, D. A. Dickie, T. B.
Gunnoe, J. Am. Chem. Soc. 2018, 140, 17007–17018.
40] N. S. Liebov, W. Zhu, J. Chen, M. S. Webster-Gardiner, W. L. Schinski, T. B.
Keywords: Rhodium · Styrene · Alkenyl Arenes · Leaching · Re-
adsorption
[
[
[
[
1] J. L. G. de Almeida, M. Dufaux, Y. B. Taarit, C. Naccache, J. Am. Oil Chem.
Soc. 1994, 71, 675–694.
2] J. A. Kocal, B. V. Vora, T. Imai, Appl. Catal. A 2001, 221, 295–301.
Gunnoe, Organometallics 2019, 38, 3860–3870.
[41] a) X. Jia, L. I. Frye, W. Zhu, S. Gu, T. B. Gunnoe, J. Am. Chem. Soc. 2020;
b) W. Zhu, T. B. Gunnoe, ACS Catal. 2020, 10, 11519–11531.
[42] a) Y. Ji, S. Jain, R. J. Davis, J. Phys. Chem. B 2005, 109, 17232–17238;
b) W. Zhu, T. B. Gunnoe, ACS Catal. 2020, 10, 11519–11531.
[43] I. W. Davies, L. Matty, D. L. Hughes, P. J. Reider, J. Am. Chem. Soc. 2001,
123, 10139–10140.
[3] C. Perego, P. Ingallina, Catal. Today 2002, 73, 3–22.
[
[
[
4] A. Galadima, O. Muraza, Microporous Mesoporous Mater. 2015, 213, 169–
1
80.
5] G. A. Olah, Á. Molnár, Hydrocarbon Chemistry 2nd ed.; Wiley-Interscience:
Hoboken, NJ, 2003, p. 283.
6] C. Perego, P. Pollesel, Advances in Nanoporous Materials, Vol. 1 (Ed.: S.
Ernst), Elsevier, 2010, pp. 97–149.
[44] S. S. Zalesskiy, V. P. Ananikov, Organometallics 2012, 31, 2302–2309.
[45] A. J. Reay, I. J. S. Fairlamb, Chem. Commun. 2015, 51, 16289–16307.
ChemCatChem 2020, 12, 1–12
10
© 2020 Wiley-VCH GmbH
��
These are not the final page numbers!