Asymmetric Nickel-Catalyzed Hydrocyanation of Styrene and 1,3-Cyclohexadiene
FULL PAPERS
second enantiomer on the chiral GC trace, for all products,
is the enantiomer in excess.
(Ed.: G. Dyker), Wiley-VCH, Weinheim, 2005, Vol. 1,
pp 87–96.
[
4] J. E. Babin, G. T. Whiteker, Asymmetricsyntheses using
optically active metal-ligand complex catalysts. US
Patent 5,360,938, 1994.
Isomerization of 2-Methyl-3-butenenitrile to 3-Pen-
tenenitrile
[
[
[
[
[
5] W. Goertz, P. C. J. Kamer, P. W. N. M. Van Leeuwen, D.
A
(
(
solution of 1 equiv. (0.018 mmol) or 3 equivs.
0.054 mmol) of L in 2.0 mL of toluene was added to 5 mg
0.018 mmol) Ni(cod) in a Schlenk tube and the mixture
Vogt Chem. Eur. J. 2001, 7, 1614–1618.
6] M. Yan, Q. Y. Xu, A. S. C. Chan, Tetrahedron: Asym-
metry 2000, 11, 845–849.
7] A. L. Casalnuovo, T. V. RajanBabu, T. A. Ayers, T. H.
Warren, J. Am. Chem. Soc. 1994, 116, 9869–9882.
8] T. V. Rajanbabu, A. L. Casalnuovo J. Am. Chem. Soc.
ACHTREUNG
2
was stirred for 5 min. To this solution 0.5 mL (5.20 mmol)
-methyl-3-butenenitrile was added and the Schlenk tube
2
was placed in an oil bath at 1008C. Samples for GC analysis
À1
were taken over time to determine the TOF (h ).
1
996, 118, 6325–6326.
9] W. Goertz, W. Keim, D. Vogt, U. Englert, M. D. K.
Boele, L. A. Van der Veen, P. C. J. Kamer, P. W. N. M.
Van Leeuwen, J. Chem. Soc., Dalton Trans. 1998,
L3PtCl2
A solution of 119 mg (13.40 mmol) L3 in 3 mL CH Cl and
2
2
2
981–2988.
2
mL CH CN was added to 50 mg (13.40 mmol) Pt(cod)Cl
A
H
R
U
G
3
2
[
10] N. Sakai, K. Nozaki, K. Mashima, H. Takaya, Tetrahe-
dron: Asymmetry 1992, 3, 583–586.
[11] C. Botteghi, G. Delogu, M. Marchetti, S. Paganelli, B.
and stirred for 1 hour at 258C. After 7 days at À308C crys-
tals were formed suitable for X-ray analysis. Filtration and
evaporation of all volatiles gave a white crystalline product;
yield:123 mg (10.64 mmol, 79%).
Sechi, J. Mol. Cat. A: Chem. 1999, 143, 311–323.
[
[
12] C. A. Tolman, Chem. Rev. 1977, 77, 313–348.
13] G. R. Van Hecke, W. D. Horrocks, Inorg. Chem. 1966,
X-Ray Crystal Structure Determination of L3PtCl2
5
, 1960–1968.
C H Cl O P Pt·2.3CH CN·0.35CH Cl , Fw=1277.09, color-
5
6
56
2
6
2
3
2
2
[14] M. J. Baker, K. N. Harrison, A. G. Orpen, P. G. Pringle,
3
less needle, 0.360.120.12 mm , triclinic, P1 (no. 1), a=
1.8303(5), b=11.9100(3), c=12.1728(3) , a=114.822(1),
b=95.154(4), g=98.106(2)8, V=1519.79(9) , Z=1, D =
G. Shaw, J. Chem. Soc., Chem. Commun. 1991, 803–
1
8
04.
3
x
[
15] M. J. Baker, P. G. Pringle, J. Chem. Soc., Chem.
À3
À1
1
.395 gcm , m=2.529 mm . 31162 reflections were mea-
Commun. 1991, 1292–1293.
16] J. Wilting, C. Müller, A. C. Hewat, D. D. Ellis, D. M.
Tooke, A. L. Spek, D. Vogt, Organometallics 2005, 24,
sured on a Nonius Kappa CCD diffractometer (sealed tube,
[
graphite monochromator, l=0.71073 ) up to a resolution
À1
of (sin q/l)max =0.65 at a temperature of 125(2) K. An
1
3–15.
absorption correction based on multiple measured reflec-
tions was applied (0.35–0.74 correction range). 13968 reflec-
tions were unique (Rint =0.0254). The structure was solved
with direct methods [29] and refined with SHELXL-97 [30]
[
[
[
17] E. Zuidema, P. W. N. M. Van Leeuwen, C. Bo, Organo-
metallics 2005, 24, 3703–3710.
18] D. A. Culkin, J. F. Hartwig Organometallics 2004, 23,
3398–3416.
19] M. Caporali, C. Müller, B. B. P. Staal, D. M. Tooke,
A. L. Spek, P. W. N. M. Van Leeuwen, Chem. Commun.
2
against F of all reflections. Non-hydrogen atoms were re-
fined with anisotropic displacement parameters. Hydrogen
atoms were introduced in geometrically idealized positions
and refined with a riding model. The acetonitrile and di-
chloromethane solvent molecules were refined with partial
occupancies, respectively. 724 parameters were refined with
2
005, 3478–3480.
[
[
[
[
20] M. R. Dennis, S. Woodward, J. Chem. Soc., Perkin
Trans. 1 1998, 1081–1086.
21] W. Keim, A. Behr, H. O. Lühr, J. Weisser, J. Catal.
189 restraints. R1/wR2 [I>2s(I)]: 0.0287/0.0792. R1/wR2
1
982, 78, 209–216.
[all refl.]: 0.0289/0.0793. S=1.135. Refined Flack parameter
22] E. M. Campi, P. S. Elmes, W. R. Jackson, C. G. Lovel,
M. K. S. Probert, Aust. J. Chem. 1987, 40, 1053–1061.
23] J. E. Bäckvall, O. S. Andell, Organometallics 1986, 5,
2350–2355.
[
31] x=À0.010(4); 99.9% Friedel pair coverage. Residual
3
electron density between À0.41 and 1.69 e . Geometry cal-
culations and checking for higher symmetry was performed
with the PLATON program [32]. CCDC 610629 contains
the supplementary crystallographic data for this paper.
These data can be obtained free of charge from The Cam-
bridge Crystallographic Data Centre via www.ccdc.cam.
ac.uk/data request/cif.
[24] After submission of this manuscript, a paper was pub-
lished on the asymmetric nickel-catalyzed hydrocyana-
tion of several dienes: B. Saha, T. V. RajanBabu, Org.
Lett. 2006, 8, 4657–4659.
[
25] More information regarding the mechanism of the
asymmetric hydrocyanation of 1,3-cyclohexadiene has
been published recently: J. Wilting, M. Janssen, C.
Müller, D. Vogt, J. Am. Chem. Soc. 2006, 128, 11374–
References
1
1375.
[
[
[
1] C. A. Tolman, R. J. McKinney, W. C. Seidel, J. D. Dru-
liner, W. R. Stevens, Adv. Catal. 1985, 33, 1–46.
2] P. S. Elmes, W. R. Jackson, J. Am. Chem. Soc. 1979,
[
[
26] R. A. Schunn, Inorg. Synth. 1974, 15, 5–9.
27] H. C. Clark, L. E. Manzer, J. Organomet. Chem. 1973,
59, 411–428.
1
01, 6128–6129.
3] J. Wilting, D. Vogt, AsymmetricHydro cy anation of al-
kenes, in: Handbook of C-H Transformations, 1st edn.,
[28] K. H. Slotta, Ber. dtsch. chem. Ges. 1934, 67B, 1028–
1030.
Adv. Synth. Catal. 2007, 349, 350 – 356
ꢂ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
355