2588
T. Schareina et al. / Tetrahedron Letters 46 (2005) 2585–2588
hedron Lett. 2004, 45, 1441–1444; (b) Marcantonio, K. M.;
Frey, L. F.; Liu, Y.; Chen, Y.; Strine, J.; Phenix, B.;
Wallace, D. J.; Chen, C. Y. Org. Lett. 2004, 6, 3723–3725;
(c) Srivastava, R. R.; Collibee, S. E. Tetrahedron Lett.
2004, 45, 8895–8897; (d) Yang, C. H.; Williams, J. M. Org.
Lett. 2004, 6, 2837–2840; (e) Sundermeier, M.; Zapf, A.;
Beller, M.; Sans, J. Tetrahedron Lett. 2001, 42, 6707–6710;
(f) Jin, F.; Confalone, P. N. Tetrahedron Lett. 2000, 41,
3271–3273.
2- and 3-bromotoluene, 3- and 4-bromoanisole, 6-meth-
oxy-2-bromonaphthalene and 3-bromothiophene gave
the corresponding benzonitriles in 80–96% yield. Highly
electron-rich substrates like 4-bromoveratrol16 and 3-
bromo-4-methylaniline are more difficult to transform.
Nevertheless, they led to the products in moderate to
good yield (59–70%) (Table 2, entries 9 and 10). How-
ever, two substituents in ortho-position lowered the yield
considerably (Table 2, entry 4).
7. For deactivation of palladium catalysts, see: Sundermeier,
M.; Zapf, A.; Mutyala, S.; Baumann, W.; Sans, S.; Weiss,
S.; Beller, M. Chem. Eur. J. 2003, 9, 1828–1836.
The difference between C–Br and C–Cl activation is
demonstrated in case of 4-halobenzotrifluoride (Table
2, entries 11 and 12). While 4-bromobenzotrifluoride
performs reasonably well (73% yield), the corresponding
chloride is only slightly converted under these condi-
tions (12% yield).
8. For examples of cyanations with catalyst turnover num-
bers >1000, see: (a) Sundermeier, M.; Zapf, A.; Beller, M.
Angew. Chem. 2003, 115, 1700–1703; Angew. Chem., Int.
Ed. 2003, 42, 1661–1664; (b) Sundermeier, M.; Mutyala,
S.; Zapf, A.; Spannenberg, A.; Beller, M. J. Organomet.
Chem. 2003, 684, 50–55; (c) Maligres, P. E.; Waters, M. S.;
Fleitz, F.; Askin, D. Tetrahedron Lett. 1999, 40, 8193–
8195.
9. (a) Sato, N.; Suzuki, M. J. Heterocycl. Chem. 1987, 24,
1371–1372; (b) Anderson, B. A.; Bell, E. C.; Ginah, F. O.;
Harn, N. K.; Pagh, L. M.; Wepsiec, J. P. J. Org. Chem.
1998, 63, 8224–8228; (c) Sakamoto, T.; Ohsawa, K. J.
Chem. Soc., Perkin Trans. 1 1999, 2323–2326.
In conclusion, we have shown for the first time, that it is
possible to perform copper-catalyzed cyanations of aryl
halides using potassium hexacyanoferrate(II).17 A vari-
ety of different aryl and heteroaryl bromides gave the
corresponding benzonitriles in good yield. This novel
procedure represents a more environmentally benign
and less hazardous protocol by using the non-toxic
potassium hexacyanoferrate(II) instead of the highly
toxic alkali cyanides.
10. (a) Zanon, J.; Klapars, A.; Buchwald, S. L. J. Am. Chem.
Soc. 2003, 125, 2890–2891; For
a copper-catalyzed
cyanation of aryl iodides, see: (b) Wu, J. X.; Beck, B.;
Ren, R. X. Tetrahedron Lett. 2002, 43, 387–389.
11. (a) Schareina, T.; Zapf, A.; Beller, M. Chem. Commun.
2004, 1388–1389; (b) Schareina, T.; Zapf, A.; Beller, M. J.
Organomet. Chem. 2004, 689, 4576–4583.
Acknowledgements
12. The price per mol CNꢀ is 2.7€ for K4[Fe(CN)6] and 7.9€
for KCN; source Aldrich Chemicals Catalogue 2003.
13. General procedure: under inert conditions 0.4 mmol
Na2CO3, 0.4 mmol K4[Fe(CN)6] (K4[Fe(CN)6]Æ3H2O is
ground to a fine powder and dried in vacuum (ca. 2 mbar)
at 80 °C over night), 0.2 mmol copper precursor and
0.4 mmol KI are placed in a pressure tube. An argon
needle is inserted into the pressure tube and the solids are
flushed with argon for at least 1 min. Then 2 mmol aryl
halide, 2 mmol amine and 2 mL of a 0.1 M stock solution
of Cu(BF4)2Æ6H2O in the corresponding solvent are added.
The pressure tube is sealed and heated for 16 h at the
temperature specified in the table. After cooling to room
temperature 3 mL dichloromethane and 400 lL diethyl-
eneglycol di-n-butylether (internal standard) are added
and the mixture is analyzed by GC. The conversion and
yield are calculated as the average of two parallel runs.
For isolating the products the reaction mixture is washed
with water and the organic phase is dried over Na2SO4.
After evaporation of the solvents the residue is subjected
to column chromatography (silica, hexane/ethyl acetate).
All prepared benzonitriles are known compounds and
identified by comparison with commercially available
materials.
This work has been supported by the State of Mecklen-
burg-Vorpommern and the Fonds der Chemischen
Industrie (FCI). We thank Dr. C. Fischer, Mrs. A. Leh-
mann, Mrs. S. Buchholz and Ms. K. Reincke (all IfOK)
for their excellent analytical support.
References and notes
1. (a) Larock, R. C. Comprehensive Organic Transformations;
VCH: New York, 1989; pp 819–995; (b) Grundmann, C.
In Houben-Weyl: Methoden der organischen Chemie, 4th
ed., Falbe, J., Ed., Georg Thieme: Stuttgart, 1985;
Vol. E5, 1985, pp 1313–1527.
2. Lindley, J. Tetrahedron 1984, 40, 1433–1456.
3. For a recent catalytic variant of the Sandmeyer reaction,
see: Beletskaya, I. P.; Sigeev, A. S.; Peregudov, A. S.;
Petrovskii, P. V. J. Organomet. Chem. 2004, 689, 3810–
3812.
4. (a) Hagedorn, F.; Gelbke, H.-P. In Ullmanns Encyklopa¨die
´
der technischen Chemie, 4th ed., Bartholome, E., Biekert,
E., Hellmann, H., Ley, H., Weigert, W. M., Weise, E.,
Eds.; Verlag Chemie: Weinheim, 1979; Vol. 17, pp 333–
338; (b) Ellis, G. P.; Romney-Alexander, T. M. Chem.
Rev. 1987, 87, 779–794.
14. Cu(BF4)2Æ6H2O was dried overnight in a desiccator over
sicapent (Merck KGaA, Darmstadt) in vacuum, then at
80 °C (melt) in vacuum.
15. Water (60 mol %) relative to the substrate are introduced
into the reaction mixture with the catalyst precursor.
16. In case of 4-bromoveratrol the reaction mixture developed
a deep purple colour. This may indicate the formation of
copper complexes from which the product is not fully
liberated.
5. (a) Tsuji, J. Transition Metal Reagents and Catalysts—
Innovations in Organic Synthesis; John Wiley: Chichester,
2000; (b) Brandsma, L.; Vasilevsky, S. F.; Verkruijsse, H.
D. Application of Transition Metal Catalysts in Organic
Synthesis; Springer: Berlin, Heidelberg, 1999; pp 149–177;
(c) Ellis, G. P.; Romney-Alexander, T. M. Chem. Rev.
1987, 87, 779–794.
6. For a review on palladium-catalyzed cyanations, see:
Sundermeier, M.; Zapf, A.; Beller, M. Eur. J. Inorg. Chem.
2003, 3513–3526; for some recent examples of palladium-
catalyzed cyanations, see: (a) Chidambaram, R. Tetra-
17. After submission of this manuscript Weissman et al.
reported also on the use of K4Fe(CN)6 with palladium
catalysts: Weissman, S. A.; Zwerge, D.; Chen, C. Org.
Chem. 2004, 70, 1508–1510.