D
C. Qi et al.
Letter
Synlett
Based on the above-mentioned results and previous re-
ports,4b,c,7c we proposed a possible mechanism for the cya-
nation of arylboronic acids (Scheme 2). Initially, the iodina-
tion of arylboronic acid 1 occurred in the presence of CuI
and TBHP, giving rise to aryl iodide 4 as the key intermedi-
ate. Then, the oxidative addition of 4 to Cu(I) took place to
form ArCu(III)I species 5, which could further react with the
cyanide anion generated in situ from the C(sp2)–CN bond
cleavage of 2a to furnish species 6. Finally, the reductive
elimination of 6 would yield the target product 3 and re-
generated the copper catalyst.
(3) (a) Wen, Q.; Jin, J.; Zhang, L.; Luo, Y.; Lu, P.; Wang, Y. Tetrahedron
Lett. 2014, 55, 1271. (b) Kim, J.; Kim, H. J.; Chang, S. Angew.
Chem. Int. Ed. 2012, 51, 11948.
(4) Recent reports, see: (a) Xu, W.; Xu, Q.; Li, J. Org. Chem. Front.
2015, 2, 231. (b) Zhao, M.; Zhang, W.; Shen, Z. J. Org. Chem.
2015, 80, 8868. (c) Zhu, Y.; Li, L.; Shen, Z. Chem. Eur. J. 2015, 21,
13246. (d) Pan, C.; Jin, H.; Pan, X.; Liu, X.; Cheng, Y.; Zhu, C. J.
Org. Chem. 2013, 78, 9494. (e) Kou, X.; Zhao, M.; Qiao, X.; Zhu,
Y.; Tong, X.; Shen, Z. Chem. Eur. J. 2013, 19, 16880. (f) Zhu, Y.;
Zhao, M.; Lu, W.; Li, L.; Shen, Z. Org. Lett. 2015, 17, 2602.
(5) (a) Sundermeier, M.; Zapf, A.; Beller, M. Angew. Chem. Int. Ed.
2003, 42, 1661. (b) Cristau, H.-J.; Ouali, A.; Spindler, J.-F.;
Taillefer, M. Chem. Eur. J. 2005, 11, 2483. (c) Schareina, T.; Zapf,
A.; Cotté, A.; Gotta, M. Adv. Synth. Catal. 2011, 353, 777.
(6) Jiang, Z.; Huang, Q.; Chen, S.; Long, L.; Zhou, X. Adv. Synth. Catal.
2012, 354, 589.
(7) (a) Jin, J.; Wen, Q.; Lu, P.; Wang, Y. Chem. Commun. 2012, 48,
9933. (b) Wen, Q.; Jin, J.; Mei, Y.; Lu, P.; Wang, Y. Eur. J. Org.
Chem. 2013, 4032. (c) Luo, Y.; Wen, Q.; Wu, Z.; Jin, J.; Lu, P.;
Wang, Y. Tetrahedron 2013, 69, 8400.
(8) (a) Xu, H.; Liu, P.-T.; Li, Y.-H.; Han, F.-S. Org. Lett. 2013, 15, 3354.
(b) Rong, G.; Mao, J.; Zheng, Y.; Yao, R.; Xu, X. Chem. Commun.
2015, 51, 13822.
CuI
Cu(I)
ArB(OH)2
ArCN
ArI
TBHP, air
3
1
4
ArCu(III)CN
ArCu(III)I
6
5
CuI
2a
CN
TBHP, air
(9) (a) Abuhaie, C.-M.; Ghinet, A.; Dubois, J.; Rigo, B.; Bîcu, E. Bioorg.
Med. Chem. Lett. 2013, 23, 5887. (b) Lengyel, L.; Nagy, T. I.; Sipos,
G.; Jones, R.; Dormán, G.; Ürge, L.; Darvas, F. Tetrahedron Lett.
2012, 53, 738. (c) Görmen, M.; Goff, R. L.; Lawson, A. M.; Daïch,
A.; Comesse, S. Tetrahedron Lett. 2013, 54, 2174. (d) El-Gohary,
N. S.; Shaaban, M. I. Eur. J. Med. Chem. 2013, 63, 185. (e) Inouye,
M.; Kim, K.; Kitao, T. J. Am. Chem. Soc. 1992, 114, 778. (f) Scott, J.
S.; deSchoolmeester, J.; Kilgour, E.; Mayers, R. M.; Packer, M. J.;
Hargreaves, D.; Gerhardt, S.; Ogg, D. J.; Rees, A.; Selmi, N.;
Stocker, A.; Swales, J. G.; Whittamore, P. R. O. J. Med. Chem.
2012, 55, 10136.
Scheme 2 Possible reaction mechanism
In summary, we have successfully developed an effi-
cient approach for the synthesis of aryl nitriles via a copper
iodide mediated cyanation of arylboronic acids or aryl io-
dines with ethyl (ethoxymethylene)cyanoacetate as the cy-
anating agent. The reaction involves a C(sp2)–CN bond
cleavage and tolerates a wide range of functional groups, af-
fording the corresponding aryl nitriles in moderate to excel-
lent yields. Further investigation on the reaction mecha-
nism and the synthetic application of the new method are
ongoing in our laboratory.
(10) He, H.; Qi, C.; Hu, X.; Ouyang, L.; Xiong, W.; Jiang, H. J. Org.
Chem. 2015, 80, 4957.
(11) (a) Sawant, D. N.; Wagh, Y. S.; Tambade, P. J.; Bhatte, K. D.;
Bhanage, B. M. Adv. Synth. Catal. 2011, 353, 781. (b) Zhang, L.;
Lu, P.; Wang, Y. Chem. Commun. 2015, 51, 2840. (c) Kim, J.; Choi,
J.; Shin, K.; Chang, S. J. Am. Chem. Soc. 2012, 134, 2528.
(d) Pawar, A. B.; Chang, S. Chem. Commun. 2014, 50, 448.
(12) Typical Procedure for the Synthesis of Compound 3a
To a 25 mL round-bottom flask was added the mixture of
boronic acid 1a (0.3 mmol), ethyl 2-cyano-3-ethoxyacrylate (2a,
0.6 mmol), CuI (0.3 mmol), t-BuOOH (0.6 mmol) in DMF (2 mL)
successively. The mixture was stirred at 130 °C for 24 h under
air. After the reaction was completed, the mixture was cooled to
room temperature, diluted with H2O (15 mL), and then
extracted with CH2Cl2 (3 × 5 mL). The organic extract was
washed with H2O (3 × 10 mL) and dried over anhydrous Na2SO4.
After removal of the CH2Cl2 in vacuum, the crude product thus
obtained was purified by column chromatography on silica gel
using PE–EtOAc as eluent to give the desired product 3a as a
white solid; yield 72%; mp: 86–87 °C. 1H NMR (400 MHz,
CDCl3): δ = 7.73–7.66 (m, 4 H), 7.59 (d, J = 7.3 Hz, 2 H), 7.51–
7.43 (m, 3 H). 13C NMR (100 MHz, CDCl3): δ = 145.6, 139.0,
132.5, 129.0, 128.6, 127.6, 127.1, 118.8, 110.8. IR (KBr): 2227,
1605, 1484, 1400, 844, 769, 736, 699, 564, 518 cm–1. MS (EI):
m/z = 179 (100) [M+], 151, 126, 113, 89, 76, 63.
Acknowledgment
We thank the National Natural Science Foundation of China
(21172078 and 21572071) and the Fundamental Research Funds for
the Central Universities (2015zz038) for financial support.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
ortioInfgrmoaitn
S
u
p
p
ortiInfogrmoaitn
References and Notes
(1) Recent reviews on C–CN bond activation, see: (a) Nakao, Y. Top
Curr. Chem. 2014, 346, 33. (b) Tobisu, M.; Chatani, N. Chem. Soc.
Rev. 2008, 37, 300. (c) Chen, F.; Wang, T.; Jiao, N. Chem. Rev.
2014, 114, 8613.
(2) (a) Fleming, F. F.; Wang, Q. Chem. Rev. 2003, 103, 2035.
(b) Miller, J. S.; Manson, J. L. Acc. Chem. Res. 2001, 34, 563.
(c) Kleemann, A.; Engel, J.; Kutscher, B.; Reichert, D. Pharmaceu-
tical Substance: Syntheses, Patents, Applications; Thieme: Stutt-
gart, 2001, 4th ed.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2016, 27, A–D