ZIAEE ET AL.
7 of 8
[2] D. J. Augeri, J. A. Robl, D. A. Betebenner, D. R. Magnin, K.
Ashish, J. G. Robertson, W. Aiying, L. M. Simpkins, T. Prakash,
H. Qi, J. Med. Chem. 2005, 48, 5025.
The model reaction process which was monitored by
TLC showed that in the early stages of the reaction benz-
aldehyde was formed which followed by the formation of
benzonitrile. These results are similar to the previously
proposed mechanism for this reaction.[49] Thus, the
La(OH)3/Fe3O4‐catalyzed transformation of benzyl alco-
hols to the corresponding benzonitriles possibly proceeds
through three sequential reactions: 1) The aerobic oxida-
tive dehydrogenation of alcohols to aldehydes,[51] 2)
Dehydrative condensation of the aldehydes and ammonia
into imines and 3) The aerobic oxidative dehydrogenation
[3] A. Kleemann, J. Engel, B. Kutscher, D. Reichert, Pharmaceuti-
cal Substance: Synthesis, Patents, Applications, 4th ed., Georg
Thieme, Stuttgart 2001.
[4] a) T. Sandmeyer, Ber. Dtsch. Chem. Ges. 1884, 17, 2650; b) T.
Sandmeyer, Ber. Dtsch. Chem. Ges. 1885, 18, 1492.
[5] G. P. Ellis, T. M. Romney‐Alexander, Chem. Rev. 1987, 87, 779.
[6] M. B. Smith, J. March, Marchs Advanced Organic Chemistry:
Reactions, Mechanisms, and Structure, 6th ed., Wiley, Hoboken,
NJ 2007.
of the imines to produce the corresponding nitriles.[52]
A
[7] a) T. Schareina, A. Zapf, M. Beller, Chem. Commun. 2004, 1388;
b) S. A. Weissman, D. Zewge, C. Chen, J. Org. Chem. 2005, 70,
1508; c) O. Grossman, D. Gelman, Org. Lett. 2006, 8, 1189.
possible mechanism of the reaction summarized in
Scheme 1.
[8] J. Kim, S. Chang, J. Am. Chem. Soc. 2010, 132, 10272.
[9] a) S. H. Yang, S. Chang, Org. Lett. 2001, 3, 4209; b) E. Choi, C.
Lee, Y. Na, S. Chang, Org. Lett. 2002, 4, 2369; c) K. Yamaguchi,
H. Fujiwara, Y. Ogasawara, M. Kotani, N. Mizuno, Angew.
Chem. 2007, 119, 3996 Angew. Chem. Int. Ed. 2007, 46, 3922.
4 | CONCLUSION
A novel magnetically recoverable lanthanum hydroxide
nanoparticles were synthesized for the oxidative synthesis
of nitriles directly from corresponding alcohols with
ammonia as nitrogen source. The scope and generality
of the process was explored for a series of structurally
diverse primary alcohols with electron‐donating and elec-
tron‐withdrawing groups with 5 mol% of La with respect
to the benzyl alcohol at reflux condition under O2. This
catalyst can be easily separated and recovered with an
external magnet from the reaction mixture for further
use which act as an efficient heterogeneous catalyst for
the aerobic oxidative synthesis of nitriles directly from
alcohols without producing the over‐oxidation products‐
benzoic acids. This catalyst provides a green method for
nitrile synthesis, which avoids the use of the conventional
inorganic cyanides. Also, the catalyst was recovered and
reused at least for 5 successful runs without significant
decrease in catalytic activity.
[10] a) S. Iida, H. Togo, Tetrahedron 2007, 63, 8274; b) K. R. Reddy,
C. U. Maheswari, M. Venkateshwar, S. Prashanthi, M. L.
Kantam, Tetrahedron Lett. 2009, 50, 2050; c) S. Yamazaki, Y.
Yamazaki, Chem. Lett. 1990, 571; d) G. D. McAllister, C. D.
Wilfred, R. J. K. Taylor, Synlett 2002, 1291; e) F. Chen, Y. Li,
M. Xu, H. Jia, Synthesis 2002, 1804; f) S. Iida, H. Togo, Tetrahe-
dron 2007, 63, 8274; g) N. Mori, H. Togo, Synlett 2005, 1456.
[11] a) W. Zhou, J. Xu, L. Zhang, N. Jiao, Org. Lett. 2010, 12, 2888; b)
M. Lamani, K. R. Prabhu, Angew. Chem., Int. Ed. 2010, 49, 6622;
c) B. V. Rokade, S. K. Malekar, K. R. Prabhu, Chem. Commun.
2012, 48, 5506.
[12] W. Zhou, L. Zhang, N. Jiao, Angew. Chem., Int. Ed. 2009, 48, 7094.
[13] S. Iida, H. Togo, Tetrahedron 2007, 63, 8274.
[14] S. Iida, H. Togo, Synlett 2007, 407.
[15] C. Tao, F. Liu, Y. Zhu, W. Liu, Z. Cao, Org. Biomol. Chem. 2013,
11, 3349.
[16] W. Yin, C. Wang, Y. Huang, Org. Lett. 2013, 15, 1850.
[17] L. M. Dornan, Q. Cao, J. C. A. Flanagan, J. J. Crawford, M. J.
Cook, M. J. Muldoon, Chem. Commun. 2013, 49, 6030.
ACKNOWLEDGEMENTS
[18] J. Kim, S. S. Stahl, ACS Catal. 2013, 3, 1652.
The authors gratefully acknowledged for partially finan-
cial support of this study (Grant No: 3/41313) by Research
Council of Ferdowsi University of Mashhad.
[19] V. K. Das, S. N. Harsh, N. Karak, Tetrahedron Lett. 2016, 57, 549.
[20] X.‐D. An, S. Yu, Org. Lett. 2015, 17, 5064.
[21] a) T. Oishi, K. Yamaguchi, N. Mizuno, Angew. Chem. Int. Ed.
2009, 48, 6286 Angew. Chem. 2009, 121, 6404; b) T. Oishi, K.
Yamaguchi, N. Mizuno, Top. Catal. 2010, 53, 479 486.
ORCID
[22] a) T. Ishida, H. Watanabe, T. Takei, A. Hamasaki, M.
Tokunaga, M. Haruta, Appl. Catal. A:Gen 2012, 85, 425.
Seyed Mohammad Seyedi
[23] K. Yamaguchi, M. Matsushita, N. Mizuno, Angew. Chem. Int.
Ed. 2004, 43, 1576.
[24] M. Matsushita, K. Kamata, K. Yamaguchi, N. Mizuno, J. Am.
Chem. Soc. 2005, 127, 6632.
REFERENCES
[1] C. P. Jasperse, D. P. Curran, T. L. Fevig, Chem. Rev. 1991, 91,
[25] J. W. Kim, K. Yamaguchi, N. Mizuno, Angew. Chem. Int. Ed.
2008, 47, 9249.
1247.