(6) Dobbs, K. D., Marshall, W. J., &Grushin, V. V. (2007). Why Excess Cyanide Can Be Detrimental to Pd-Catalyzed Cyanation of
Haloarenes. Facile Formation and Characterization of [Pd(CN)3(H)]2-and [Pd(CN)3(Ph)]2-.Journal of the American Chemical
Society, 129(1), 30-31.DOI: 10.1021/ja066931d.
(7) Schareina, T., A. Zapf, and M. Beller, Potassium hexacyanoferrate (II)—A new cyanating agent for the palladium-catalyzed cyanation of
aryl halides. Chemical Communications, 2004(12): p. 1388-1389. DOI: 10.1039/B400562G.
(8) Erhardt, S., Grushin, V. V., Kilpatrick, A. H., Macgregor, S. A., Marshall, W. J., & Roe, D. C. (2008). Mechanisms of Catalyst Poisoning
in Palladium-Catalyzed Cyanation of Haloarenes. Remarkably Facile C−N Bond Activation in the [(Ph3P) 4Pd]/[Bu4N]+ CN-System.
Journal of the American Chemical Society, 130(14), 4828-4845.DOI: 10.1021/ja078298h.
(9) (a) Senecal, T. D., Shu, W., & Buchwald, S. L. (2013). A General, Practical Palladium-Catalyzed Cyanation of (Hetero) Aryl Chlorides
and Bromides.AngewandteChemie International Edition, 52(38), 10035-10039. DOI: 10.1002/anie.201304188. (b) Littke, A., Soumeillant,
M., Kaltenbach, R. F., Cherney, R. J., Tarby, C. M., &Kiau, S. (2007). Mild and general methods for the palladium-catalyzed cyanation of
aryl and heteroaryl chlorides. Organic letters, 9(9), 1711-1714. DOI: 10.1021/ol070372d. (c) Zou, T., Feng, X., Liu, H., Yu, X.,
Yamamoto, Y., &Bao, M. (2013). Efficient palladium-catalyzed cyanation of aryl/heteroaryl bromides with K4[Fe(CN)6] in t-BuOH–H2O
using tris (2-morpholinophenyl) phosphine as a ligand. RSC Advances, 3(43), 20379-20384. DOI: 10.1039/C3RA43279C. (d)Yeung, P.
Y., So, C. M., Lau, C. P., &Kwong, F. Y. (2011). A mild and efficient palladium-catalyzed cyanation of aryl chlorides with K4 [Fe(CN)6].
Organic letters, 13(4), 648-651. DOI: 10.1021/ol070372d. (e) Jin, F., &Confalone, P. N. (2000). Palladium-catalyzed cyanation reactions
of aryl chlorides. Tetrahedron Letters, 41(18), 3271-3273. DOI: 10.1016/S0040-4039(00)00384-1. (f) Ren, Y., Liu, Z., He, S., Zhao, S.,
Wang, J., Niu, R., & Yin, W. (2009). Development of an Open-Air and Robust Method for Large-Scale Palladium-Catalyzed Cyanation of
Aryl Halides: The Use of i-PrOH to Prevent Catalyst Poisoning by Oxygen. Organic Process Research & Development,13(4), 764-768.
DOI: 10.1021/op9000725. (g) Martin, M. T., Liu, B., Cooley Jr, B. E., &Eaddy, J. F. (2007). Open air palladium catalyzed cyanation—the
(10) White, R. J., Luque, R., Budarin, V. L., Clark, J. H., &Macquarrie, D. J. (2009). Supported metal nanoparticles on porous materials.
Methods and applications.Chemical Society Reviews,38(2), 481-494. DOI: 10.1039/B802654H.
(11) (a) Li, D., & Ma, M. (1998). Cyclodextrin polymer separation materials. Patent WO, 9822197. (b) Lien, N. R., & Telford, J. R. (2009). An
investigation of the inclusion complex of cyclomaltoheptaose (β-cyclodextrin) with N-methylanthranilic acid in the solid
(12) Trotta, F., Dianzani, C., Caldera, F., Mognetti, B., &Cavalli, R. (2014). The application of nanosponges to cancerdrugdelivery. Expert
(13) (a) Khalafi-Nezhad, A., &Panahi, F. (2014). Size-controlled synthesis of palladium nanoparticles on a silica–cyclodextrin substrate: A
novel palladium catalyst system for the Heck reaction in water. ACS Sustainable Chemistry & Engineering, 2(5), 1177-1186. DOI:
10.1021/sc5000122. (b) Khalafi-Nezhad, A., &Panahi, F. (2011). Immobilized palladium nanoparticles on a silica–starch substrate (PNP–
SSS): as an efficient heterogeneous catalyst for Heck and copper-free Sonogashira reactions in water. Green Chemistry, 13(9), 2408-2415.
DOI: 10.1039/C1GC15360A.(c) Tukhani, M.,Panahi, F., &Khalafi-Nezhad, A. (2017). Supported Palladium on Magnetic Nanoparticles–
Starch Substrate (Pd-MNPSS): Highly Efficient Magnetic Reusable Catalyst for C–C Coupling Reactions in Water. ACS Sustainable
Chemistry & Engineering,6(1), 1456-1467. DOI. 10.1021/acssuschemeng.7b03923.
(14) (a)Yeung, P. Y., So, C. M., Lau, C. P., &Kwong, F. Y. (2010). A Mild and Efficient Palladium‐Catalyzed Cyanation of Aryl Mesylates in
Water or tBuOH/Water. AngewandteChemie International Edition, 49(47), 8918-8922.DOI: 10.1002/anie.201005121. (b) Zhang, J., Chen,
X., Hu, T., Zhang, Y., Xu, K., Yu, Y., & Huang, J. (2010). Highly efficient Pd-catalyzed cyanation of aryl chlorides and arenesulfonates
with potassium ferrocyanide in Aqueous Media. Catalysis letters, 139(1-2), 56-60. DOI: 10.1007/s10562-010-0385-1 (c) Shim, Y. J., Lee,
H. J., & Park, S. (2012). Water-soluble complexes MX2L2 (M= Pd, Pt; L= PPh2 (C6H4-p-SO3K)): Synthesis, stereoisomerism, and catalytic
activities for aromatic cyanation in n-heptane/water biphasic solution. Journal of Organometallic Chemistry, 696(26), 4173-4178. DOI:
10.1016/j.jorganchem.2011.09.009. (d) Chen, G., Weng, J., Zheng, Z., Zhu, X., Cai, Y., Cai, J., & Wan, Y. (2008). Pd/C‐Catalyzed
Cyanation of Aryl Halides in Aqueous PEG.European Journal of Organic Chemistry, 2008(20), 3524-3528. DOI: 10.1002/ejoc.200800295.
(15) Akindoyo, J. O., Beg, M., Ghazali, S., Islam, M. R., Jeyaratnam, N., &Yuvaraj, A. R. (2016). Polyurethane types, synthesis and
applications–a review. RSC Advances, 6(115), 114453-114482. DOI: 10.1039/C6RA14525F.
(16) Pavia, D. L., Lampman, G. M., Kriz, G. S., &Vyvyan, J. A. (2008). Introduction to spectroscopy. Cengage Learning.
19