Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
9
Catal., 2019, 9, 1979; (b) P. Anbarasan, T. Schareina and M.
DOI: 10.1039/D0CC00163E
Beller, Chem. Soc. Rev., 2011, 40, 5049; (c) G. P. Ellis and T.
M. Romney-Alexander, Chem. Rev., 1987, 87, 779; (d) Y. Yang
and S. L. Buchwald, Angew. Chem. Int. Ed., 2014, 53, 8677.
0 (a) T. D. Senecal, W. Shu and S. L. Buchwald, Angew. Chem.
Int. Ed., 2013, 52, 10035; (b) D. T. Cohen and S. L. Buchwald,
Org. Lett., 2015, 17, 202; (c) J. Zanon, A. Klapars and S. L.
Buchwald, J. Am. Chem. Soc., 2003, 125, 2890.
1
1
Scheme 5. Direct insertion of -CN group to phenothiazine.
1 (a) N. A. Romero and D. A. Nicewicz, Chem. Rev., 2016, 116,
In conclusion, we have developed a metal-free photocatalytic
method for the direct cyanation of aryl bromides. Silyl-radical-
mediated halogen abstraction strategy has been employed to
1
0075; (b) L. M. Marzo, S. K. Pagire, O. Reiser and B. König,
Angew. Chem., Int. Ed., 2018, 57, 10034; (c) T. P. Yoon, M. A.
Ischay and J. Du, Nat. Chem., 2010, 2, 527; (d) C. K. Prier, D.
A. Rankic and D. W. C. MacMillan, Chem. Rev., 2013, 113,
2
functionalize the C(sp )-Br bond. Organic photoredox catalyst
5
1
2
322; (e) D. M. Schultz and T. P. Yoon, Science, 2014, 343,
239176; (f) D. Ravelli, S. Protti and M. Fagnoni, Chem. Rev.,
016, 116, 9850; (g) J. K. Matsui, S. B. Lang, D. R. Heitz and G.
4
CzIPN and cyanating reagent TsCN effectively accomplish the
reactions. A range of aryl and heteroaryl bromides were tested
successfully. The developed photocatalytic cyanation reaction
proceeded at room temperature and provided moderate to
good product yields. Wide variety of functional groups e.g.
ester, acid, amide, and protected amines were well tolerant
towards the proposed photocatalytic conditions. To the best of
our knowledge, this is the first time we have shown a metal-
free direct cyanation of (hetero)aryl bromides. Additionally,
the application of this direct cyanation was demonstrated by
incorporating -CN group to arene ring of phenothiazine. This
Mild and simple protocol can be used to synthesize
pharmaceuticals, organic precursors, and natural products.
We thank the DST (SERB) (Grant No. DIA/2018/000019) for
A. Molander, ACS Catal., 2017, 7, 2563.
1
1
1
2 M. D. Kärkäs, J. A. Porco and C. R. J. Stephenson, Chem. Rev.,
2016, 116, 9683.
3 T. S. Ratani, S. Bachman, G. C. Fu and J. C. Peters, J. Am.
Chem. Soc., 2015, 137, 13902.
4 (a) D. H. R. Barton, J. C. Jaszberenyi and E. A. Theodorakis,
Tetrahedron Lett., 1991, 32, 3321; (b) D. H. R. Barton, J. C.
Jaszberenyi and E. A. Theodorakis, Tetrahedron, 1992, 48,
2613; (c) F. L. Vaillant, M. D. Wodricha and J. Waser, Chem.
Sci., 2017, 8, 1790; (d) N. P. Ramirez, B. König and J. C.
Gonzalez-Gomez, Org. Lett., 2019, 21, 1368.
1
5 (a) J. B. McManus and D. A. Nicewicz, J. Am. Chem. Soc.,
2
017, 139, 2880; (b) N. Holmberg-Douglas and D. A.
Nicewicz, Org. Lett., 2019, 21, 7114.
financial support. Maniklal Shee is thankful to UGC for the 16 (a) J. Luo and J. Zhang, ACS Catal., 2016, 6, 873; (b) E.
Speckmeier, T. G. Fischer and K. Zeitler, J. Am. Chem. Soc.,
018, 140, 15353.
fellowship and IIT Kharagpur for instrument facilities.
2
1
1
7 C. Le, T. Q. Chen, T. Liang, P. Zhang and D. W. C. MacMillan,
Science, 2018, 360, 1010.
8 (a) C. H. Schiesser and M. L. Styles, J. Chem. Soc., Perkin
Trans. 2, 1997, 2, 2335; (b) M. D. Paredes and R. Alonso, J.
Org. Chem., 2000, 65, 2292.
9 (a) M. Ballestri, C. Chatgilialoglu, K. B. Clark, D. Griller, B. Gies
and, B. Kopping, J. Org. Chem., 1991, 56, 678; (b) C.
Chatgilialoglu, Chem. Rev., 1995, 95, 1229; (c) C.
Chatgilialoglu, C. Ferreri, Y. Landais and V. I. Timokhin, Chem.
Rev., 2018, 118, 6516.
Conflicts of interest
There are no conflicts to declare.
1
Notes and references
1
(a) F. F. Fleming, L. Yao, P. C. Ravikumar, L. Funk and B. C.
Shook, J. Med. Chem., 2010, 53, 7902; (b) S. T. Murphy et al.,
Bioorg. Med. Chem. Lett., 2007, 17, 2150; (c) F. F. Fleming,
Nat. Prod. Rep., 1999, 16, 597; (d) R. V. Jagadeesh, H. Junge
and M. Beller, Nature Communications, 2014, 5, 4123.
2
0 (a) P. Zhang, C. C. Le and D. W. C. MacMillan, J. Am. Chem.
Soc., 2016, 138, 8084; (b) R. T. Smith, X. Zhang, J. A. Rincón,
J. Agejas, C. Mateos, M. Barberis, S. García-Cerrada, O. D.
Frutos and D. W. C. MacMillan, J. Am. Chem. Soc., 2018, 140,
1
7433; (c) V. Bacauanu, S. Cardinal, M. Yamauchi, M. Kondo,
2
3
J. Hyland and C. O’Connor, J. Chem. Soc., Perkin Trans. 2,
D. F. Fernández, R. Remy and D. W. C. MacMillan, Angew.
Chem. Int. Ed., 2018, 57, 12543; (d) D. J. P. Kornfilt and D. W.
C. MacMillan, J. Am. Chem. Soc., 2019, 141, 6853.
1
973, 223.
A. E. Finholt, E. C. Jacobson, A. E. Ogard and P. Thompson, J.
Am. Chem. Soc., 1955, 77, 4163.
2
2
1 (a) C. Chatgilialoglu, Wiley: Chichester, UK, 2014; pp 1–17;
4
5
C. G. Swain, J. Am. Chem. Soc., 1947, 69, 2306.
F. R. Benson and J. J. Ritter, J. Am. Chem. Soc., 1949, 71,
(
b) J. J. Devery III, J. D. Nguyen, C. Dai and C. R. J.
Stephenson, ACS Catal., 2016, 6, 5962.
4
128.
2 (a) B. Persson, J. Seita, A. Holm, O. O. Orazi, G. Schroll, D. H.
Williams and A. M. Pilotti, Acta Chem. Scand., 1977, 31B, 88;
6
7
8
(a) T. Sandmeyer, Ber. Dtsch. Chem. Ges., 1884, 17, 1633; (b)
H. H. Hodgson, Chem. Rev., 1947, 40, 251.
(
b) V. Pirenne, G. Kurtay, S. Voci, L. Bouffier, N. Sojic, F.
Robert, D. M. Bassani and Y. Landais, Org. Lett., 2018, 20,
521.
K. W. Rosenmund and E. Struck, Ber. Dtsch. Chem. Ges.,
1
919, 2, 1749.
4
(a) J. R. Dalton and S. L. Regen, J. Org. Chem., 1979, 44, 4443;
2
3 (a) T. Meyer, D. Ogermann, A. Pankrath, K. Kleinermanns and
T. J. J. Müller, J. Org. Chem., 2012, 77, 3704; (b) M. Hauck, R.
Turdean, K. Memminger, J. Schönhaber, F.Rominger and T. J.
J. Müller, J. Org. Chem., 2010, 75, 8591.
(
b) N. Chatani and T. Hanafusa, J. Org. Chem., 1986, 51,
4
714; (c) N. Sato and M. Suzuki, J. Heterocycl. Chem., 1987,
4, 1371; (d) D. M. Tschaen, R. Desmond, A. O. King, M. C.
2
Fortin, B. Pipik, S. King and T. R. Verhoeven, Synth. Commun.,
1
994, 24, 887.
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins