Full Paper
reduced pressure and used to determine yield without any further
purification. All of the alcohols synthesized are known compounds.
Conclusions
The reported findings are encouraging for exploration and fur-
ther development of silatrane reactivity. Cheap and easily acces-
sible hydrosilatrane has been shown to be an effective reduc-
tant of aryl aldehydes bearing a variety of functionalities in this
user-friendly method. Furthermore, hydrosilatrane demon-
strates excellent stability to air and ambient moisture rendering
it amenable to benchtop reactions and long-term storage. Fur-
ther work is currently underway to help elucidate the mecha-
nism of this reaction and also to expand this work to other
reducible functionalities.
Acknowledgments
The authors would like to thank Northern Illinois University for
financial support and Prof. Thomas Gilbert for assistance in su-
pervision.
Keywords: Reduction · Silanes · Silatrane · Lewis bases ·
Aldehydes
[1] a) H. I. Schlesinger, C. H. Brown, A. E. Finholt, R. J. Gilbreath, R. H. Hoek-
stra, K. E. Hyde, J. Am. Chem. Soc. 1953, 75, 215–219; b) H. I. Schlesinger,
C. H. Brown, B. Abraham, A. C. Bond, N. Davidson, A. E. Finholt, R. J.
Gilbreath, H. Hoekstra, L. Horvitz, K. E. Hyde, J. Am. Chem. Soc. 1953, 75,
186–190.
Experimental Section
General Considerations: All reactions were carried out under am-
bient conditions in an open vessel, with no special effort to exclude
water or air from reaction mixtures unless otherwise noted. Chemi-
cals and reagents were purchased from Sigma–Aldrich and/or
Fisher, and were used without further purification unless otherwise
[2] G. L. Larson, J. L. Fry, Org. React. 2008, 71, 1–737.
[3] a) Z. Jia, M. Liu, X. Li, A. S. C. Chan, C.-J. Li, Synlett 2013, 24, 2049–2056;
b) M. Fujita, T. Hiyama, J. Org. Chem. 1988, 53, 5405–5415; c) M. P. Doyle,
D. J. DeBruyn, S. J. Donnelly, D. A. Kooista, A. A. Odubeta, C. T. West,
S. M. Zonnedelt, J. Org. Chem. 1974, 39, 2740–2747.
1
noted. H NMR spectra were recorded at 500/300 MHz at ambient
[4] a) M. Fujita, T. Hiyama, J. Am. Chem. Soc. 1984, 106, 4629–4630; b) L.
Gan, M. A. Brook, Can. J. Chem. 2006, 84, 1416–1425; c) I. Ojima, M.
Nihonyanagi, Y. Nagai, Bull. Chem. Soc. Jpn. 1972, 45, 3722–3722; d) H.
Mimoun, J. V. de Saint Laumer, L. Giannini, R. Scopelliti, C. Floriani, J. Am.
Chem. Soc. 1999, 121, 6158–6166.
temperature using a Bruker Avance III spectrometer. The chemical
shifts in 1H NMR spectra are reported relative to residual CHCl3 in
CDCl3 (δ =7.27 ppm). The chemical shifts in 13C NMR spectra are
reported relative to residual CHCl3 in CDCl3 (δ =77.23 ppm). The
yields were determined using mesitylene as an internal standard in
CDCl3. The abbreviations used for the chemical shifts are as follows:
s (singlet), d (doublet), t (triplet), dd (doublet of doublets), dt (dou-
blet of triplets), td (triplet of doublets), dq (doublet of quartets), m
(unresolved multiplet).
[5] a) S. Bhattacharyya, J. Org. Chem. 1998, 63, 7101–7102; b) T. Mizuta, S.
Sakaguchi, Y. Ishii, J. Org. Chem. 2005, 70, 2195–2199.
[6] M. P. Doyle, C. T. West, J. Org. Chem. 1975, 40, 3835–3838.
[7] a) V. Gevorgyan, M. Rubin, J.-X. Liu, Y. Yamamoto, J. Org. Chem. 2001, 66,
1672–1675; b) N. Gandhamsetty, J. Jeong, J. Park, S. Park, S. Chang, J. Org.
Chem. 2015, 80, 7281–7287; c) S. Rendler, M. Oestreich, Angew. Chem.
Int. Ed. 2008, 47, 5997–6000; Angew. Chem. 2008, 120, 6086–6089.
[8] A. Fedorov, A. Toutov, N. Swisher, R. Grubbs, Chem. Sci. 2013, 4, 1640–
1645.
[9] a) M. Rubio, J. Campos, E. Carmona, Org. Lett. 2011, 13, 5236–5239; b) K.
Matsubara, T. Iura, T. Maki, H. Nagashima, J. Org. Chem. 2002, 67, 4985–
4988; c) S. E. Denmark, J. D. Baird, Chem. Eur. J. 2006, 12, 4954–4963; d)
T. T. Metsanen, M. Oestreich, Organometallics 2015, 34, 543–546; e) S.
Díez-Gonzaález, N. M. Scott, S. P. Nolan, Organometallics 2006, 25, 2355–
2358.
[10] a) H. Zhou, H. Sun, S. Zhang, X. Li, Organometallics 2015, 34, 1479–1486;
b) H. Reuther, Z. Anorg. Allg. Chem. 1953, 272, 122–125; c) J. M. Roth,
A. M. Brook, H. B. Penny, J. Organomet. Chem. 1996, 521, 65–74; d) S. A.
Wells, Org. Process Res. Dev. 2010, 14, 484–484; e) M. Zhao, W. Xie, C. Cui,
Chem. Eur. J. 2014, 20, 9259–9262; f) K. Junge, B. Wendt, D. Addis, S.
Zhou, S. Das, M. Beller, Chem. Eur. J. 2010, 16, 68–73.
[11] K. Revunova, I. G. Nikonov, Chem. Eur. J. 2014, 20, 839–845.
[12] M. T. Attar-Bashi, C. Eaborn, J. Vencl, R. D. Walton, J. Organomet. Chem.
1976, 117, C87–C89.
Synthesis of Silatrane via Boratrane: To a 25 mL flask was added
boric acid (50 mmol) and triethanolamine (50 mmol). Water (3 mL)
was added to facilitate solubility. The flask was equipped with a
short path distillation apparatus and heated to 120 °C until no more
water condensed. The isolated boratrane was recrystallized from
acetonitrile and used directly in the next step. The experimental
data collected are in agreement with those described in the litera-
ture.[1] 70 %. 1H NMR (500 MHz, CDCl3): δ = 3.65 (t, J = 5.5 Hz, 6 H),
3.04 (t, J = 5.5 Hz, 6 H). 13C NMR (125 MHz, CDCl3) 62.1, 59.3. IR
(ATR) 2988, 2853, 1469, 1370, 1258, 1160, 1115, 1063, 1026, 1001,
933, 889, 730, 621, 560.
To an oven-dried, argon-flushed 100 mL flask containing boratrane
(5 mmol) in mixed xylenes (40 mL), was added triethoxysilane
(6 mmol) and anhydrous AlCl3 (0.05 mmol). The reaction was re-
fluxed over 4 h and then cooled to room temperature. The resulting
solids were filtered and further recrystallized from xylene to give
silatrane as white fibrous crystals. The experimental data collected
are in agreement with those described in the literature.[19] 88 %. 1H
NMR (500 MHz, CDCl3): δ = 3.94 (s, 1 H), 3.83 (t, J = 6 Hz, 6 H), 2.89
(t, J = 6 Hz, 6 H). 13C NMR (125 MHz, CDCl3) 57.2, 51.2. IR (ATR)
2975, 2936, 2886, 2087, 1487, 1457, 1347, 1268, 1090, 1047, 1020,
926, 860, 748, 630, 591.
[13] a) J. K. Puri, R. Singh, V. K. Chahal, Chem. Soc. Rev. 2011, 40, 1791–1840;
b) C. L. Frye, G. A. Vincent, W. A. Finzel, J. Am. Chem. Soc. 1971, 93, 6805–
6811; c) V. Pestunovich, S. Kirpichenko, M. Voronkov, Silatranes. In The
Chemistry of Organic Silicon Compounds; Z. Rappoport, Y. Apeloig, Wiley,
Chishester, UK, 1998, vol. 2, p. 1447–1537; d) M. G. Voronkov, V. M. Dy-
akov, S. V. Kirpichenko, J. Organomet. Chem. 1982, 233, 1–147; e) G. J.
Verkade, Acc. Chem. Res. 1993, 26, 483–489.
[14] a) M. Kira, K. Sato, H. Sakurai, J. Org. Chem. 1987, 52, 948–949; b) C.
Breliere, F. Carre, R. J. P. Corriu, M. Poirier, G. Royo, Organometallics 1986,
5, 388–390; c) M. Deneux, I. C. Akhrem, D. V. Avetisyan, E. I. Mysof, M. E.
Vol′pin, Bull. Soc. Chim. Fr. 1973, 2638–2642; d) J. Boyer, C. Breliere, R. J. P.
Corriu, A. Kpoton, M. Poirier, G. J. Royo, J. Organomet. Chem. 1986, 311,
C39–C43.
[15] a) J. Pietruszka, Science Synthesis 2002, 4, 159–185; b) C. Chuit, R. J. P.
Corriu, C. Reye, in: Chemistry of Hypervalent Compounds, Wiley-VCH,
Weinheim, Germany, 1999, p. 81–146.
General Method for the Reduction of Aryl Aldehydes: To a 2
dram vial containing a stir bar was added silatrane (0.15 mmol), aryl
aldehyde (0.1 mmol), and DMF (1 mL). The solution was stirred for
5 min to allow for all the silatrane to dissolve, after which additive
(1 pellet of NaOH finely ground) was added. After 30 min of stirring
in ambient conditions the solution was washed once with 1
M HCl,
then extracted three times with dichloromethane and once with
diethyl ether. The resulting organic extract was concentrated under
Eur. J. Org. Chem. 2016, 2207–2211
2210
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim