Dalton Transactions
Paper
1
8
18
O-labeled H
2
O experiments
N. S. Finney, P. J. Pospisil, M. L. Guler, T. Ishida and
E. N. Jacobsen, J. Am. Chem. Soc., 1998, 120, 948;
(h) R. Zhang and M. Newcomb, Acc. Chem. Res., 2008, 41,
468; (i) M. E. Crestoni, S. Fornarini and F. Lanucara, Chem.
To a mixture of cyclohexene (0.005 mmol), cobalt catalyst
1
8
(
0.001 mmol), and H
2
O (10–40 μL, 0.556–2.22 mmol; 97%
1
8
O enriched, Aldrich Chemical Co.) in a dried solvent CH CN/
Cl (1 : 1 v/v; 1 mL) was added MCPBA (0.01 mmol). The
2 2
3
–
Eur. J., 2009, 15, 7863; ( j) C. Mukherjee, A. Stammler,
CH
H. Bogge and T. Glaser, Inorg. Chem., 2009, 48,
9476.
reaction mixture was stirred for 3 min at room temperature
1
6
and then directly analyzed by GC/mass analysis. The O and
1
8
3 (a) J. Rosenthal and D. G. Nocera, Acc. Chem. Res., 2007, 40,
543; (b) X. Zhang, K. Sasaki and C. L. Hill, J. Am. Chem.
Soc., 1996, 118, 4809; (c) T. Punniyamurthy, S. S. J. Kalra
and J. Iqbal, Tetrahedron Lett., 1995, 36, 8497; (d) D. Dhar,
Y. Koltypin, A. Gedanken and S. Chandrasekaran, Catal.
Lett., 2003, 86, 197; (e) I. Fernández, J. R. Pedro,
A. L. Rosello, R. Ruiz, I. Castro, X. Ottenwaelder and
Y. Journaux, Eur. J. Org. Chem., 2001, 1235; (f) J. D. Koola
and J. K. Kochi, J. Org. Chem., 1987, 52, 4545;
O compositions in cyclohexene oxide were determined by the
1
6
relative abundance of mass peaks at m/z = 97 for O and m/z =
9
average values are presented.
1
8
9 for O. All reactions were run at least three times and the
Analysis of the O–O bond cleavage products from the
oxidation reactions of substrates by PPAA in the presence of
the cubane-type cobalt(II) cluster 1
PPAA (0.04 mmol) was added to a mixture of substrate
(
g) R. V. Patel, J. G. Panchal and S. K. Menon, J. Inclusion
(0–0.16 mmol), cubane-type cobalt cluster 1 (0.001 mmol), and
Phenom. Macrocyclic Chem., 2010, 67, 63; (h) W. Nam,
I. Kim, Y. Kim and C. Kim, Chem. Commun., 2001, 1262;
solvent (distilled CH CN/CH Cl , 1 : 1 v/v; 1 mL). The mixture
3
2
2
was stirred for 10 min at room temperature. Each reaction was
monitored by GC/mass analysis of 20 μL aliquots withdrawn
periodically from the reaction mixture. Dodecane was used as
an internal standard to quantify the yields of products and
conversions of substrates. All reactions were run at least in
triplicate, and the average conversions and product yields are
presented. Conversions and product yields were calculated
with respect to the substrate or PPAA.
(
i) F. F. Pfaff, S. Kundu, M. Risch, S. Pandian, F. Heims,
I. Pryjomska-Ray, P. Haack, R. Metzinger, E. Bill, H. Dau,
P. Comba and K. Ray, Angew. Chem., 2011, 123, 1749,
(
Angew. Chem., Int. Ed., 2011, 50, 1711); ( j) J. G. McAlpin,
Y. Surendranath, M. Dinca, T. A. Stich, S. A. Stoian,
W. H. Casey, D. G. Nocera and R. D. Britt, J. Am. Chem. Soc.,
2010, 132, 6882; (k) B. K. Das and J. H. Clark, Chem.
Commun., 2000, 605; (l) P. Sarmah and B. K. Das, Indian
J. Chem., Sect. A: Inorg., Bio-inorg., Phys., Theor. Anal. Chem.,
2
014, 53, 41; (m) A. Sartorel, M. Bonchio, S. Campagna and
Acknowledgements
F. Scandola, Chem. Soc. Rev., 2013, 42, 2262; (n) V. Artero
and M. Fontecave, Chem. Soc. Rev., 2013, 42, 2338.
The Korea CCS R&D Center and the Basic Science Research
Program of the National Research Foundation of Korea (NRF)
funded by the Ministry of Education, Science and Technology
4
5
(a) T. J. Collins, S. Ozaki and T. G. Richmond, J. Chem. Soc.,
Chem. Commun., 1987, 803; (b) W. Nam, J. Y. Ryu, I. Kim
and C. Kim, Tetrahedron Lett., 2002, 43, 5487; (c) J. W. Shin,
S. R. Rowthu, M. Y. Hyun, Y. J. Song, C. Kim, B. G. Kim and
K. S. Min, Dalton Trans., 2011, 40, 5762.
(
NRF-2014R1A2A1A11051794 and NRF-2015R1A2A2A09001301)
are gratefully acknowledged.
(a) R. Chakrabarty, S. J. Bora and B. K. Das, Inorg. Chem.,
2
007, 46, 9450; (b) F. Evangelisti, R. Guttinger, R. More,
References
S. Luber and G. R. Patzke, J. Am. Chem. Soc., 2013, 135,
18734; (c) R. Chakrabarty, B. K. Das and J. H. Clark, Green
Chem., 2007, 9, 845; (d) C. E. Sumner Jr. and
G. R. Steinmetz, J. Am. Chem. Soc., 1985, 107, 6124.
6 R. Chakrabarty, P. Sarmah, B. Saha, S. Chakravorty and
B. K. Das, Inorg. Chem., 2009, 48, 6371.
7 R. Chakrabarty and B. K. Das, J. Mol. Catal. A: Chem., 2004,
223, 39.
8 D. Lee, L. Sorace, A. Caneschi and S. J. Lippard, Inorg.
Chem., 2001, 40, 6774.
1
2
(a) B. S. Lane and K. Burgess, Chem. Rev., 2003, 103, 2457;
b) E. M. McGarrigle and D. G. Gilheany, Chem. Rev., 2005,
05, 1563; (c) S. V. Kryatov and E. V. Rybak-Akimova, Chem.
Rev., 2005, 105, 2175; (d) M. Costas, M. P. Mehn,
M. P. Jensen and L. Que Jr., Chem. Rev., 2004, 104, 939;
(
1
(
1
e) Z. Gross and H. G. Gray, Adv. Synth. Catal., 2004, 346,
65.
(a) W. Nam, Acc. Chem. Res., 2007, 40, 522; (b) D. Dolphin,
T. G. Traylor and L. Y. Xie, Acc. Chem. Res., 1997, 30, 251;
(
c) C. Kim and Y. Watanabe, in Encyclopedia of Catalysis,
9 C. Hormillosa, S. Healy, T. Stephen and I. D. Brown, Bond
Valence Calculator, Version 2.0, McMaster University,
Canada, 1993, http://ccp14.ac.uk.
Wiley, New York, 2002, pp. 593–643; (d) N. Jin, M. Ibrahim,
T. G. Spiro and J. T. Groves, J. Am. Chem. Soc., 2007, 129,
1
2
2416; (e) D. E. Lansky and D. P. Goldberg, Inorg. Chem., 10 (a) P. King, R. Clérac, W. Wernsdorfer, C. E. Anson and
006, 45, 5119; (f) G. Yin, J. M. McCoemick, M. Buchalova,
A. K. Powell, Dalton Trans., 2004, 2670; (b) G. K.-Y. Ng,
J. W. Ziller and A. S. Borovik, Chem. Commun., 2012, 48,
2546; (c) P. Mahata, S. Natarajan, P. Panissod and
M. Drillon, J. Am. Chem. Soc., 2009, 131, 10140; (d) D. Lee,
A. M. Danby, K. Rodgers, V. W. Day, K. Smith,
C. M. Perkins, D. Kitko, J. D. Carter, W. M. Scheper and
D. H. Busch, Inorg. Chem., 2006, 45, 8052; (g) M. Palucki,
This journal is © The Royal Society of Chemistry 2015
Dalton Trans.