Paper
Dalton Transactions
1
wR
of-fit on F = 1.039.
Crystal data for 3: yellow colour, plate, C52
= 1283.32, monoclinic, P2(1)/c, a = 20.1055(6) Å, b = 18.0229(5)
Å, c = 15.0825(5) Å, α = 90°, β = 90.727(3)°, γ = 90°, V = 5464.8(3)
2
= 0.0893, for all data R
1
= 0.0540, wR
2
= 0.0975, goodness-
1-Hexanol. H NMR (400 MHz, CDCl
3
): δ 3.65 (t, J = 7.2 Hz,
2
2H), 1.55 (m, 2H), 1.33 (m, 6H), 0.87 (t, J = 7.4 Hz, 3H).
C NMR (100 MHz): δ 63.8, 32.9, 31.8, 25.3, 22.7, 14.1.
1
3
H
39
F
12
N
7
Ni
2
O
11
,
F
w
3
−3
Å , Z = 4, Dcalcd = 1.560 Mg m , F(000) = 2608, crystal size:
Acknowledgements
3
0
.25 × 0.15 × 0.10 mm , 2.82 to 25.00°, 27 720 reflections
collected, 9191 reflections [R(int) = 0.0476]. The disordered We thank the Ministry of Science and Technology, Taiwan for
solvent in the crystal was refined by the use of SQUEEZE. The financial support (MOST103-2113-M-002-MY3).
3
total potential volume for solvent molecules is 229.0 Å in the
3
per unit cell volume 5464.9 Å [4.2%]. Final R indices [I >
2
sigma(I)]: R
1 2 1
= 0.0536, wR = 0.1324, for all data R = 0.0828,
References
2
wR = 0.1506, goodness-of-fit on F = 1.032.
2
1
(a) M. Boiocchi and L. Fabbrizzi, Chem. Soc. Rev., 2014, 43,
835; (b) J.-P. Launay, Coord. Chem. Rev., 2013, 257, 1544;
Catalysis–reduction of carboxylic acids
A reaction tube loaded with a mixture of carboxylic acid
1
(c) Y. Sunatsuki, R. Kawamoto, K. Fujita, H. Maruyama,
T. Suzuki, H. Ishida, M. Kojima, S. Iijima and
N. Matsumoto, Coord. Chem. Rev., 2010, 254, 1871;
(d) K. P. Kornecki, J. F. Berry, D. C. Powers and T. Ritter,
Prog. Inorg. Chem., 2014, 58, 225; (e) L. Noodleman,
W.-G. Han Du, J. A. Fee, A. W. Gotz and R. C. Walker, Inorg.
Chem., 2014, 53, 6458; (f) K. Mashima, Y. Hayashi, K. Agura
and T. Ohshima, Pure Appl. Chem., 2014, 86, 335;
(g) P. Haack and C. Limberg, Angew. Chem., Int. Ed., 2014,
53, 4282, and references therein.
0.2 mmol), diphenylsilane (0.8 mmol), Ni complex 3 (1 × 10−
2
(
mmol), and P(n-Bu) (0.02 mmol) in dioxane (0.5 mL) was
3
heated at 100 °C for 16 h. After the reaction, brine (2 mL) was
added to the reaction mixture and then extracted with ether
(3 mL × 3). The combined organic extracts were dried and con-
centrated. The residue was analysed by NMR spectroscopy. For
the purification, chromatography on silica gels provided the
desired compound in the pure form. The spectral data of the
organic products are essentially identical to the reported ones.
1
Benzyl alcohol. H NMR (400 MHz, CDCl ): δ 7.48–7.32 (m,
2 (a) C. He and S. J. Lippard, J. Am. Chem. Soc., 2000, 122, 184;
(b) F. Meyer, Prog. Inorg. Chem., 2009, 56, 487; (c) W.-Z. Lee,
H.-S. Tseng, T.-L. Wang, H.-L. Tsai and T.-S. Kuo, Organo-
metallics, 2010, 29, 2874, and references therein.
3
1
3
5
H), 4.63 (s, 2H), 2.51 (s, 1H). C NMR (100 MHz): δ 141.1,
1
28.2, 127.9, 127.3, 64.9.
p-Methylbenzyl alcohol. H NMR (400 MHz, CDCl ): δ 7.30
1
3
(
m, 2H), 7.17 (m, 2H), 4.68 (s, 2H), 2.42 (s, 3H), 1.81 (s, 1H).
3 (a) S. Pal and C. Uyeda, J. Am. Chem. Soc., 2015, 137, 8042;
(b) T. J. Steiman and C. Uyeda, J. Am. Chem. Soc., 2015, 137,
6104; (c) A. Velian, S. Lin, A. J. M. Miller, M. W. Day and
T. Agapie, J. Am. Chem. Soc., 2010, 132, 6296;
(d) N. P. Mankad, Synlett, 2014, 1197.
4 (a) J. Wallick, C. G. Riordan and G. P. A. Yap, J. Am. Chem.
Soc., 2013, 135, 14972; (b) T.-P. Cheng, B.-S. Liao, Y.-H. Liu,
S.-M. Peng and S.-T. Liu, Dalton Trans., 2012, 41, 3468;
(c) J. Lach, A. Jeremies, V. Lozan, C. Loose, T. Hahn,
J. Kortus and B. Kersting, Inorg. Chem., 2012, 51, 12380;
(d) A. Bheemaraju, J. W. Beattie, E. G. Tabasan,
P. D. Martin, R. L. Lord and S. Groysman, Organometallics,
2013, 32, 2952; (e) J. Ferrando-Soria, O. Fabelo,
M. Castellano, J. Cano, S. Fordham and H.-C. Zhou, Chem.
Commun., 2015, 51, 13381.
5 (a) Q. Xing, K. Song, T. Liang, Q. Liu, W.-H. Sun and
C. Redshaw, Dalton Trans., 2014, 43, 7830; (b) J. P. McInnis,
M. Delferro and T. J. Marks, Acc. Chem. Res., 2014, 47, 2545.
(Polymerization).
6 (a) A. Jeremies, U. Lehmann, S. Gruschinski, F. Schleife,
M. Meyer, V. Matulis, O. A. Ivashkevich, M. Handke,
K. Stein and B. Kersting, Inorg. Chem., 2015, 54, 3937;
(b) G. L. Guillet, J. B. Gordon, G. N. Di Francesco,
M. W. Calkins, E. Cizmar, K. A. Abboud, M. W. Meisel,
R. Garcia-Serres and L. J. Murray, Inorg. Chem., 2015, 54,
2691; (c) W. J. Schreiter, A. R. Monteil, E. Kalachnikova,
M. A. Peterson, M. D. Moulis, C. D. Gasery,
1
3
C NMR (100 MHz): δ 138.2, 137.1, 128.9, 127.4, 65.0, 20.9.
1
p-Chlorobenzyl alcohol.
H NMR (400 MHz, CDCl3):
1
3
δ 7.39–7.25 (m, 4H), 4.61 (s, 2H), 2.18 (s, 1H). C NMR
(100 MHz): δ 139.0, 133.6, 129.1, 128.4, 64.1.
1
p-Cyanobenzyl alcohol. H NMR (400 MHz, CDCl ): δ 7.61
3
1
3
(
(
m, 2H), 7.50 (m, 2H), 4.72 (s, 2H), 2.73 (s, 1H). C NMR
100 MHz): δ 146.2, 132.6, 127.2, 119.1, 111.2, 64.3.
1
p-(Methoxycarbonyl)benzyl alcohol. H NMR (400 MHz,
CDCl
.74 (s, 2H), 3.88 (s, 3H), 2.35 (bs, 1H). C NMR (100 MHz):
δ 166.8, 146.3, 129.4, 129.1, 126.3, 64.6, 51.9.
3
): δ 8.03 (d, J = 8.2 Hz, 2H), 7.45 (d, J = 8.2 Hz, 2H),
1
3
4
1
p-(Methoxymethyl)benzyl alcohol.
CDCl ): δ 7.41 (s, 4H), 4.73 (s, 4H). C NMR (100 MHz):
δ 140.6, 127.4, 65.5.
-Phenylprop-2-en-1-ol. H NMR (400 MHz, CDCl
m, 2H), 7.34 (m, 2H), 7.28 (m, 1H), 6.61 (d, J = 14.7 Hz, 1H),
H NMR (400 MHz,
1
3
3
1
3
3
): δ 7.43
(
6
1
3
.41 (m, 1H), 4.34 (m, 2H). C NMR (100 MHz, CDCl3):
δ 136.9, 131.0, 128.7, 128.5, 127.9, 126.2, 64.0.
1
2
-Phenylethanol. H NMR (400 MHz, CDCl
3
): δ 7.41–7.34 (m,
2
2
1
H), 7.32–7.23 (m, 3H), 3.92–3.83 (m, 2H), 2.89 (t, J = 7.4 Hz,
1
3
H), 2.02 (s, 1H). C NMR (100 MHz): δ 138.8, 129.2, 128.3,
26.6, 63.8, 39.1.
1
1
-Octanol. H NMR (400 MHz, CDCl ): δ 3.63 (t, J = 7.5 Hz,
3
2
H), 1.57 (m, 2H), 1.28 (m, 10H), 0.84 (t, J = 7.1 Hz, 3H).
C NMR (100 MHz): δ 62.9, 33.1, 32.3, 29.6, 29.2, 25.6,
2.1, 14.4.
1
3
2
Dalton Trans.
This journal is © The Royal Society of Chemistry 2016