8
NOURI AND HOSSEINI‐MONFARED
catalyst is truly heterogeneous and only a trace amount of
vanadium (0.03%) was determined in the filtrate using induc-
tively coupled plasma analysis.
[17] C. Pereira, K. Biernacki, S. L. H. Rebelo, A. L. Magalhãesa, A. P. Carvalho,
J. Piresb, C. Freire, J. Mol. Catal. A 2009, 312, 53.
[
18] C. Pereira, A. R. Silva, A. P. Carvalho, J. Pires, C. Freire, J. Mol. Catal. A
008, 283, 5.
19] B. Jarrais, A. R. Silva, C. Freire, Eur. J. Inorg. Chem. 2005, 22, 4582.
2
[
4
|
CONCLUSIONS
[20] J. Xu, Q. Jiang, J. K. Shang, Y. Wang, Y. X. Li, RSC Adv. 2015, 5,
2526.
9
[
21] S. Tangestaninejad, M. Moghadam, V. Mirkhani, I. M. Baltork, K. Ghani,
To summarize, the heterogeneous catalyst FeSi/Ag/VO
based on silver and [VO(acac)2] immobilized on
mesoporous silica‐coated magnetite nanospheres demon-
strates superior catalytic activity and regioselectivity in the
J. Iran. Chem. Soc. 2008, 5, 71.
[
22] A. Pokutsa, Y. Kubaj, A. Zaborovskyi, D. Maksym, J. Muzart, A.
Sobkowiak, Appl. Catal. A 2010, 390, 190.
[23] R. Broska, J. Rychly, K. Csomorova, Polym. Degrad. Stab. 1999, 63, 231.
[24] M. A. Bigi, S. A. Reed, M. C. White, J. Am. Chem. Soc. 2012, 134, 9721.
[25] X. Wang, J. Wu, M. Zhao, Y. Lv, G. Li, C. Hu, J. Phys. Chem. C 2009, 113,
oxidation of cycloalkanes and alkylaromatics with H O2
2
under mild conditions. The FeSi/Ag/VO–H O system
2
2
produces cyclohexanone/cyclohexanol with 93% selectivity
at 99% cyclohexane conversion and oxidizes benzene to
phenol with 66% conversion. The FeSi/Ag/VO material
behaves as a true heterogeneous catalyst and can be recycled
and reused without suffering a loss of catalytic properties.
The FeSi/Ag/VO–H O –oxalic acid–CH CN system is a
cheap and environmentally friendly oxidizing system that
has potential for use in the preparation of fine chemicals
and removal of hazardous aromatic compounds from indus-
trial sewage.
1
4270.
[
[
[
[
26] J. A. Labinger, J. Mol. Catal. A 2004, 220, 27.
27] L. Chao‐Jun, B. M. Trost, Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 13197.
28] Y. Lin, C. Haynes, Chem. Mater. 2009, 21, 3979.
29] S. Sahu, S. Mohapatra, Dalton Trans. 2013, 42, 2224.
2
2
3
[30] X. Zhu, Y. Chen, F. Zhang, J. Niu, M. Xie, J. Ma, RSC Adv. 2014, 4,
2509.
[31] G. B. Shul'pin, Y. N. Kozlov, L. S. Shul'pina, P. V. Petrovskiy, Appl.
Organometal. Chem. 2010, 24, 464.
[
32] R. M. Cornell, U. Schwertmann, The Iron Oxides, Wiley‐VCH, Weinheim
996.
1
[
[
[
[
33] G. W. Poling, J. Electrochem. Soc. 1969, 116, 958.
34] R. M. Taylor, U. Schwertmann, Clay Min. 1974, 10, 299.
35] W. Cai, J. Q. Wan, J. Colloid Interface Sci. 2007, 305, 366.
ACKNOWLEDGMENTS
The authors are grateful for the financial support of this study
by the University of Zanjan.
36] X. Liang, X. Wang, J. Zhuang, Y. T. Chen, D. S. Wang, Y. D. Li, Adv. Funct.
Mater. 2006, 16, 1805.
REFERENCES
[
[
[
37] Z. Pei, H. Xu, Y. Zhang, J. Alloys Compd. 2009, 468, L5.
[1] L. Alaerts, J. Wahlen, P. A. Jacobs, D. E. De Vos, Chem. Commun. 1727,
38] N. Goswami, P. Sen, Solid State Commun. 2004, 132, 791.
2008.
39] C. Wang, J. Hong, G. Chen, Y. Zhang, N. Gu, Chin. Chem. Lett. 2010, 21,
[
[
2] J. H. Clark, D. J. Macquarrie, Org. Process Res. Dev. 1997, 1, 149.
179.
3] V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara, J. M. Basset,
Chem. Rev. 2011, 111, 3036.
[40] A. Jitianu, M. Crisan, A. Meghea, I. Rau, M. Zaharescu, J. Mater. Chem.
2002, 12, 1401.
[4] A. H. Lu, E. L. Salabas, F. Schüth, Angew. Chem. Int. Ed. 2007, 46, 1222.
[41] B. Vlčková, B. Strauch, M. Horák, Collect. Czech. Chem. Commun. 1987,
5
2, 686.
42] I. Halasz, M. Agarwal, E. Senderov, B. Markus, Appl. Catal. A 2003, 241,
67.
[
5] Y. H. Deng, C. C. Wang, J. H. Hu, W. L. Yang, S. K. Fu, Colloids Surf., A
[
2005, 262, 87.
1
[
[
6] J. Liu, S. Z. Qiao, Q. H. Hu, G. Q. Lu, Small 2011, 7, 425.
[
43] G. B. Shul'pin, D. Attanasio, L. Suber, J. Catal. 1993, 142, 147.
7] A. L. Morel, S. I. Nikitenko, K. Gionnet, A. Wattiaux, J. Lai‐Kee‐Him, C.
Labrugere, B. Chevalier, G. Deleris, C. Petibois, A. Brisson, ACS Nano
[
44] R. Z. Khaliullin, A. T. Bell, M. Head‐Gordon, J. Phys. Chem. B 2005, 109,
1
7984.
2
008, 2, 847.
8] J. Chen, X. Tang, J. Liu, E. Zhan, J. Li, X. Huang, W. Shen, Chem. Mater.
007, 19, 4292.
9] H. Hu, Z. Wang, L. Pan, S. Zhao, S. Zhu, J. Phys. Chem. C 2010, 114, 7738.
[
[
45] G. B. Shul'pin, G. V. Nizova, Y. N. Kozlov, V. S. Arutyunov, A. C. M. Dos
[
Santos, A. C. T. Ferreira, D. Mandelli, J. Organometal. Chem. 2005, 690,
4
2
498.
[
46] G. B. Shul'pin, G. Süss‐Fink, J. R. Lindsay‐Smith, Tetrahedron 1999, 55,
[
[
[
10] Y. Chi, Q. Yuan, Y. Li, J. Tu, L. Zhao, N. Li, X. Li, Colloid Interface Sci.
5345.
2012, 383, 96.
[
[
[
[
47] A. Pokutsa, J. L. Bras, J. Muzart, Kinet. Catal. 2007, 48, 26.
48] W. Kanjina, W. Trakarnpruk, J. Met. Mater. Min. 2010, 20, 29.
49] A. Sakthivel, P. Selvam, J. Catal. 2002, 211, 134.
11] S. Lijuan, H. Jiang, A. Songsong, Z. Junwei, Z. Jinmin, R. Dong, Chin. J.
Catal. 2013, 34, 1378.
12] Z. P. Qu, M. J. Cheng, W. X. Huang, X. H. Bao, J. Catal. 2005, 229,
50] M. Salavati‐Niasari, M. Shakouri‐Arani, F. Davar, Micropor. Mesopor.
Mater. 2008, 116, 77.
446.
[
[
13] B. Zahed, H. Hosseini‐Monfared, Appl. Surf. Sci. 2015, 328, 536.
[
[
51] S. E. Dapurkar, A. Sakthivel, P. Selvam, J. Mol. Catal. A 2004, 223, 241.
14] T. H. Struzinski, L. R. Gohren, A. H. R. MacArthur, Transition Met. Chem.
52] S. I. Niwa, M. Eswaramoorthy, J. Nair, A. Raj, N. Itoh, H. Shoji, T. Namba,
2
009, 34, 637.
15] P. Borah, X. Ma, K. T. Nguyen, Y. Zhao, Angew. Chem. Int. Ed. 2012, 51,
756.
F. Mizukami, Science 2002, 295, 105.
[
[
[53] G. Bellussi, R. Millini, P. Pollesel, C. Perego, New J. Chem. 2016, 40,
7
4061.
16] C. Pereira, J. F. Silva, A. M. Pereira, J. P. Aráujo, G. Blanco, J. M. Pintado,
[54] R. O. C. Norman, Principles of Organic Synthesis, 2nd ed., Chapman and
Hall, New York 1978 377.
C. Freire, Catal. Sci. Technol. 2011, 1, 784.