ACS Catalysis
Letter
Homogeneous Hydrogenation of Biogenic Carboxylic Acids with
ACKNOWLEDGMENTS
■
+
[
Ru(TriPhos)H] : A Mechanistic Study. J. Am. Chem. Soc. 2011, 133,
We thank SERB New Delhi (No. EMR/2016/002517), DAE
and NISER for financial support. S.K. thanks DST for INSPIRE
fellowship. V.K. thanks SERB for National Postdoctoral
Fellowship.
1
4349−14358. (g) vom Stein, T.; Meuresch, M.; Limper, D.; Schmitz,
M.; Holscher, M.; Coetzee, J.; Cole-Hamilton, D. J.; Klankermayer, J.;
Leitner, W. Highly Versatile Catalytic Hydrogenation of Carboxylic
and Carbonic Acid Derivatives Using a Ru-Triphos Complex:
Molecular Control over Selectivity and Substrate Scope. J. Am.
Chem. Soc. 2014, 136, 13217−13225.
REFERENCES
■
(7) (a) Fernandez-Salas, J. A.; Manzini, S.; Nolan, S. P. Chemo-
(
1) (a) Gooßen, L. J.; Rodriguez, L.; Gooßen, K. Carboxylic Acids as
Substrates in Homogeneous Catalysis. Angew. Chem., Int. Ed. 2008, 47,
selective Ruthenium-Catalysed Reduction of Carboxylic Acids. Adv.
Synth. Catal. 2014, 356, 308−312. (b) Misal Castro, L. C.; Li, H.;
Sortais, J.-B.; Darcel, C. Selective Switchable Iron-Catalyzed Hydro-
silylation of Carboxylic Acids. Chem. Commun. 2012, 48, 10514−
3
(
100−3120.
2) (a) Boronic Acids. In Preparation and Applications in Organic
Synthesis and Medicine, 2nd Edition; Hall, D. G., Ed.; Wiley−VCH:
Weinheim, Germany, 2011. (b) Pelter, A.; Smith, K.; Brown, H. C.
Borane Reagents; Academic Press: London, 1988. (c) Brown, H. C.;
Kramer, G. W.; Levy, A. B.; Midland, M. M. Organic Syntheses via
Boranes; Wiley−Interscience: New York, 1975; Vol. 1. (d) Lennox, A.
J.; Lloyd-Jones, G. C. Selection of Boron Reagents for Suzuki−
Miyaura Coupling. Chem. Soc. Rev. 2014, 43, 412−443. (e) Miyaura,
N.; Suzuki, A. Palladium-Catalyzed Cross-Coupling Reactions of
Organoboron Compounds. Miyaura, N.; Suzuki, A. Chem. Rev. 1995,
1
0516. (c) Zhang, Y. J.; Dayoub, W.; Chen, G. R.; Lemaire, M.
Copper(II) Triflate-Catalyzed Reduction of Carboxylic Acids to
Alcohols and Reductive Etherification of Carbonyl Compounds.
Tetrahedron 2012, 68, 7400−7407.
(8) Regarding Mn, see: (a) Zheng, J.; Chevance, S.; Darcel, C.;
Sortais, J. B. Selective Reduction Of Carboxylic Acids to Aldehydes
Through Manganese Catalysed Hydrosilylation. Chem. Commun. 2013,
4
9, 10010−10012. Regarding Ir, see: (b) Corre, Y.; Rysak, V.; Trivelli,
X.; Agbossou-Niedercorn, F.; Michon, C. A Versatile Iridium(III)
Metallacycle Catalyst for the Effective Hydrosilylation of Carbonyl and
Carboxylic Acid Derivtives. Eur. J. Org. Chem. 2017, 2017, 4820−4826.
9
(
5, 2457−2483.10.1021/cr00039a007
3) (a) Carroll, A. M.; O’Sullivan, T. P.; Guiry, P. J. The
Development of Enantioselective Rhodium-Catalysed Hydroboration
of Olefins. Adv. Synth. Catal. 2005, 347, 609−631. (b) Beletskaya, I.;
Pelter, A. Hydroborations Catalysed by Transition Metal Complexes.
Tetrahedron 1997, 53, 4957−5026. (c) Burgess, K.; Ohlmeyer, M. J.
Transition-Metal Promoted Hydroborations of Alkenes, Emerging
Methodology for Organic Transformations. Chem. Rev. 1991, 91,
179−1191. (d) Li, J. F.; Wei, Z. Z.; Wang, Y. Q.; Ye, M. Base-Free
Nickel-Catalyzed Hydroboration of Simple Alkenes with bis-
pinacolato)diboron in an Alcoholic Solvent. Green Chem. 2017, 19,
(
9) Kaithal, A.; Chatterjee, B.; Gunanathan, C. Ruthenium Catalyzed
Selective Hydroboration of Carbonyl Compounds. Org. Lett. 2015, 17,
790−4793.
10) Kaithal, A.; Chatterjee, B.; Gunanathan, C. Ruthenium-
4
(
Catalyzed Selective Hydroboration of Nitriles and Imines. J. Org.
Chem. 2016, 81, 11153−11161.
1
(
11) Kaithal, A.; Chatterjee, B.; Gunanathan, C. Ruthenium-
Catalyzed Regioselective 1,4-Hydroboration of Pyridines. Org. Lett.
016, 18, 3402−3405.
12) Kisan, S.; Krishnakumar, V.; Gunanathan, C. Ruthenium-
(
4
2
(
498−4502. (e) Chen, J.; Lu, Z. Asymmetric Hydrofunctionalization
of Minimally Functionalized Alkenes via Earth Abundant Transition
Metal Catalysis. Org. Chem. Front. 2018, 5, 260−272.
Catalyzed Anti-Markovnikov Selective Hydroboration of Olefins. ACS
Catal. 2017, 7, 5950−5954.
(
4) (a) Seyden-Penne, J. Reductions by the Alumino- and Borohydrides
(13) Chatterjee, B.; Gunanathan, C. Ruthenium Catalyzed Selective
in Organic Synthesis, 2nd Edition; Wiley: New York, 1997.
b) Reductions in Organic Synthesis; Abdel-Magid, A. F., Ed.; ACS
Hydrosilylation of Aldehydes. Chem. Commun. 2014, 50, 888−890.
(
(14) (a) Geilen, F. M. A.; Engendahl, B.; Harwardt, A.; Marquardt,
Symposium Series, Vol. 641; American Chemical Society: Washington,
DC, 1996. (c) Rylander, P. N. Catalytic Hydrogenation in Organic
Syntheses; Academic Press: New York, 1979. (d) Kanth, J. V. B.;
Periasamy, M. Selective Reduction of Carboxylic Acids into Alcohols
Using Sodium Borohydride and Iodine. J. Org. Chem. 1991, 56, 5964−
W.; Klankermayer, J.; Leitner, W. Selective and Flexible Trans-
formation of Biomass-Derived Platform Chemicals by a Multifunc-
tional Catalytic System. Angew. Chem., Int. Ed. 2010, 49, 5510−5514.
(b) Krishnan, R.; Sprycha, R. Interactions of acetylenic diol surfactants
with polymers: Part 1. Maleic anhydride co-polymers. Colloids Surf., A
5
965. (e) Suseela, Y.; Periasamy, M. Reduction of Carboxylic Acids
into Alcohols Using NaBH4 in the Presence of Catechol and/or
1
(
CF COOH. Tetrahedron 1992, 48, 371−376. (f) Kokotos, G.; Noula,
3
(
16) [Cp*Ir(H) (Bpin) ] and [Cp*Rh(H) (Bpin) ] are reported
2
2
2
2
C. Selective One-Pot Conversion of Carboxylic Acids into Alcohols. J.
Org. Chem. 1996, 61, 6994−6996. (g) Bagheri, M.; Karimkoshteh, M.
V
V
and the corresponding Ir −H and Rh −H signals appeared at δ −15.8
ppm and δ −11.9 ppm and, respectively. (a) For the iridium complex,
see: Kawamura, K.; Hartwig, J. F. Rhodium Boryl Complexes in the
Catalytic, Terminal Functionalization of Alkanes. J. Am. Chem. Soc.
One-Pot Reduction of Aromatic Carboxylic Acid to Alcohol by SiO @
2
FeSO Nano Composite at Solvent-free Condition. Iran. J. Chem.
4
Chem. Eng. 2017, 36, 37−43.
5) Szostak, M.; Spain, M.; Procter, D. J. Electron Transfer Reduction
2
001, 123, 8422−8423. (b) For the rhodium complex, see: Hartwig, J.
(
F.; Cook, K. S.; Hapke, M.; Incarvito, C. D.; Fan, Y.; Webster, C. E.;
Hall, M. B. Rhodium Boryl Complexes in the Catalytic, Terminal
Functionalization of Alkanes. J. Am. Chem. Soc. 2005, 127, 2538−2552.
of Carboxylic Acids Using SmI −H O−Et N. Org. Lett. 2012, 14,
2
2
3
8
(
40−843.
6) (a) Cui, X.; Li, Y.; Topf, C.; Junge, K.; Beller, M. Ruthenium-
(17) Anaby, A.; Butschke, B.; Ben-David, Y.; Shimon, L. J. W.; Leitus,
Catalyzed Hydrogenation of Carboxylic Acids to Alcohols. Angew.
Chem., Int. Ed. 2015, 54, 10596−10599. (b) Korstanje, T. J.; van der
Vlugt, J. I.; Elsevier, C. J.; de Bruin, B. Hydrogenation of Carboxylic
Acids with a Homogeneous Cobalt Catalyst. Science 2015, 350, 298−
G.; Feller, M.; Milstein, D. B−H Bond Cleavage via Metal−Ligand
Cooperation by Dearomatized Ruthenium Pincer Complexes. Organo-
metallics 2014, 33, 3716−3726.
(18) Reaction of benzoic acid and pinacolborane provided the
3
02. (c) Ullrich, J.; Breit, B. Selective Hydrogenation of Carboxylic
formation of benzoyl boronate ester in 5 min with liberation of
hydrogen. Liberated hydrogen was detected and confirmed by GC
analyses.
Acids to Alcohols or Alkanes Employing a Heterogeneous Catalyst.
ACS Catal. 2018, 8, 785−789. (d) Brewster, T. P.; Miller, A. J. M.;
Heinekey, D. M.; Goldberg, K. I. Hydrogenation of Carboxylic Acids
Catalyzed by Half-Sandwich Complexes of Iridium and Rhodium. J.
Am. Chem. Soc. 2013, 135, 16022−16025. (e) Carnahan, J. E.; Ford, T.
A.; Gresham, W. F.; Grigsby, W. E.; Hager, G. F. Reduction of
Carboxylic Acids and their Derivatives to Alcohols, Ethers, and
Amines. J. Am. Chem. Soc. 1955, 77, 3766−3768. (f) Geilen, F. M. A.;
Engendahl, B.; Holscher, M.; Klankermayer, J.; Leitner, W. Selective
(19) Li, L.; Zhu, H.; Liu, L.; Song, D.; Lei, M. A Hydride-Shuttle
Mechanism for the Catalytic Hydroboration of CO . Inorg. Chem.
2
2
018, 57, 3054−3060.
4
776
ACS Catal. 2018, 8, 4772−4776