ChemCatChem
10.1002/cctc.201801343
FULL PAPER
(
zero imaginary frequency) as either minima or transition states
funds and Plan Propio of I+D+i-UCLM (2014/10340) for a
(
one imaginary frequency). Intrinsic reaction coordinate (IRC)
predoctoral contract.
calculations[40] were computed for the transition states to confirm
they connect with the corresponding intermediates. All the
energies collected in the text are Gibbs energies in water at 298K. Conflict of interest
Authors declare no conflict of interest
Acknowledgements
Keywords: Ruthenium • Deuterium labeling • Transfer
hydrogenation • Reductive amination • Imine
This work was supported by the MINECO of Spain (Grant project
CTQ2014-58812-C2-1-R, FEDER funds). MRC thanks FEDER
[
1]
(a) J. Atzrodt, V. Derdau, T. Fey, J. Zimmerman, Angew. Chem. Int.
Ed. 2007, 46, 7744 – 7765. (b) R. Corberán, M. Sanaú, E. Peris, J.
Am. Chem. Soc. 2006, 128, 3974-3979.
D. R. Jensen, M. J. Schultz, J. A. Mueller, M. S. Sigman, Angew.
Chem., Int. Ed. 2003, 42, 3810 − 3813.
2010, 49, 7548 – 7552; (i) Q. Lei, Y. Wei, D. Talwar, Ch. Wang, D.
Xue, J. Xiao, Chem. Eur. J. 2013, 19, 4021 – 4029.
N. Fleury-Brégeot, V. de la Fuente, S. Castillón, C. Claver,
ChemCatChem 2010, 2, 1346 – 1371.
(a) X. Wu, J. Xiao in Metal-Catalyzed Reactions in Water. Chap 6:
Hydrogenation and Transfer Hydrogenation in Water, Book Editor(s):
P. H. Dixneuf, V. Cadierno, Wiley Online Library, 2013, pp 173 – 242;
(b) C. K. Z. Andrade, L. M. Alves, Curr. Org. Chem. 2005, 9, 195 –
218; (c) T. Kitanosono, K. Masuda, P. Xu, Sh. Kobayashi, Chem. Rev.
2018, 118, 679 – 746; (d) X. Wu, Ch. Wang, J. Xiao, Chem. Rev. 2016,
16, 2772 – 2786; (e) D. Wang, D. Astruc, Chem. Rev. 2012, 115, 6621
– 6686.
[18]
[19]
[
2]
3]
[
D. Klomp, T. Maschmeyer, U. Hanefeld, J. A. Peters, Chem. Eur. J.
2004, 10, 2088 − 2093.
[
[
[
4]
5]
6]
J. Thiem, H. Mohn, A. Heesing, Synthesis 1985, 775 − 778.
R. H. Crabtree, J. Organomet. Chem. 2004, 689, 4083 − 4091.
(a) H. Wang, A. A. Hussain, J. S. Pyrek, J. Goodman, P. J. Wedlund,
J. Pharm. Biomed. Anal. 2004, 34, 1063 − 1070; (b) L. A. Felton, P. P.
Shah, Z. Sharp, V. Atudorei, G. S. Timmins, Drug Dev. Ind. Pharm.
2
011, 37, 88 − 92; (c) G. Bergner, C. R. Albert, M. Schiller, G.
[20]
[21]
(a) A. Guerriero, M. Peruzzini, L. Gonsalvi, Catalysts 2018, 8, 88 – 97;
(b) W. Shan, F. Meng, Y. Wu, F. Mao, X. Li, J. Organomet. Chem.
2011, 696, 1687 – 1690; (c) X. Wu, C. Corcoran, S. Yang, J. Xiao,
ChemSusChem 2008, 1, 71 – 74; (d) B. Pugin, V. Groehm, R. Moser,
H. U. Blaser, Tetrahedron: Asymmetry 2006, 17, 544 – 549; (e) K. Ohe,
K. Morioka, K. Yonehara. S. Uemura, Tetrahedron: Asymmetry 2002,
13, 2155 – 2160.
Bringmann, T. Schirmeister, B. Dietzek, S. Niebling, S. Schluecker, J.
Popp. Analyst 2011, 136, 3686 − 3693.
E. Stokvis, H. Rosing, J. H. Beijnen, Rapid Commun. Mass Spectrom.
[
7]
2005, 19, 401 – 407.
[8]
9]
C. K. Sanderson, Nature 2009, 458, 269.
A. R. G. Smith, K. H. Lee, A. Nelson, M. James, P. L. Burn, I. R. Gentle,
Adv. Mater. 2012, 24, 822 − 826.
[
S. R. Senthamizh, R. Nanthini, G. Sukanya, J. Sci. Tech. Res. 2012,
[
10]
11]
K. H. Lieser, K. H. Nuclear and Radiochemistry: Fundamentals and
Applications, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2007.
(a) S. Kobayashi, K. Manabe, Acc. Chem. Res. 2002, 35, 209 – 217;
1, 61 − 63.
[22]
[23]
Y.-M. He, Q.-H. Fan, ChemCatChem 2015, 7, 398 – 400.
N. Uematsu, A. Fujii, S. Hashiguchi, T. Ikariya, R. Noyori, J. Am.
Chem. Soc. 1996, 118, 4916 – 4917.
[
(
b) U. M. Lindström, Chem. Rev. 2002, 102, 2751 – 2772; (c) C.
Capello, U. Fisher, K. Hungerbühler, Green Chem. 2007, 9, 927 – 934;
d) R. A. Sheldon, Green Chem. 2005, 7, 267 – 278.
[24]
[25]
H.-Y. T. Chen, Ch. Wang, X. Wu, X. Jiang, C. Richard, A. Catlow, J.
Xiao, Chem. Eur. J. 2015, 21, 16564 – 16577.
Y. Himeda, S. Miyazawa, N. Onozawa-Komatsuzaki, T. Hiroseb, K.
Kasuga, Dalton Trans. 2009, 6286 – 6288; (b) Ch.-P. Lau, L. Cheng,
J. Mol. Cat. 1993, 64, 39 – 50.
T. Abura, S. Ogo, Y. Watanabe, S. Fukuzumi, J. Am. Chem. Soc.
2003, 125, 4149 – 4154.
M. C. Carrión, M. Ruiz-Castañeda, G. Espino, C. Aliende, L. Santos,
A. M. Rodríguez, B. R. Manzano, F. A. Jalón, A. Lledós, ACS Cat.
2014, 4, 1040 – 1053.
M. A. Leiva, V. Vargas, R. G. E. Morales, Spectroscopy Lett. 2002, 35,
611 – 624.
(a) Y. Himeda, S. Miyazawa, N. Onozawa–Komatsuzaki, T. Hirose, K.
Kasuga, Dalton. Trans. 2009, 32, 6286 − 6288; (b) W.-H. Wang, J. F.
Hull, J. T. Muckerman, E. Fujita, T. Hirose, Y. Himeda, Chem. Eur. J.
2012, 18, 9397 − 9404.
(
[
12]
13]
(a) S. A. Lawrence in Amines: Synthesis, Properties and Applications.
Stephen A. Lawrence, Cambridge University Press, 2004; (b) N.
Talwar, C. R. Salguero, J. Xiao, Chem. Eur. J. 2014, 20, 245 – 252;
(c) J. Gallardo-Donaire, M. Ernst, O. Trapp, T. Schauba, Adv. Synth.
[26]
[27]
Catal. 2016, 358, 358 – 363.
(a) M. Takahashi, K. Oshima, S. Matsubara, Chem. Lett. 2005, 34, 192
[
–
193; (b) E. Alexakis, M. J. Hickey, J. R. Jones, L. P. Kingston, W. J.
S. Lockley, A. N. Mather, T. Smith, D. J. Wilkinson, Tetrahedron Lett.
005, 46, 4291 – 4293; (c) L. Neubert, D. Michalik, S. Bähn, S. Imm,
2
[28]
[29]
H. Neumann, J. Atzrodt, V. Derdau, W. Holla, M. Beller, J. Am. Chem.
Soc. 2012, 134, 12239 – 12244.
A. Azua, S. Sanz, E. Peris, Chem. Eur. J. 2011, 17, 3963 – 3967.
B. Chatterjee, V. Krishnakumar, Ch. Gunanathan, Org. Lett. 2016, 18,
[
[
14]
15]
5
892 – 5895.
(a) Y. Amrani, L. Lecomte, D. Sinou, Organometallics 1989, 8, 542 −
47; (b) J. Bakos, A. Orosz, B. Heil, M. Laghmari, P. Lhoste, D. Sinou,
[16]
[30]
[31]
[32]
J. B. Åberg, J. S. M. Samec, J.-E. Bäckvall, Chem. Commun. 2006,
2771 – 2773.
5
J. Chem. Soc., Chem. Commun. 1991, 1684 − 1685; (c) C. Lensink, J.
G. de Vries, Tetrahedron: Asymmetry 1992, 3, 235 − 238; (d) E.
Lensink, C. Rijnberg, J. G. de Vries, J. Mol. Catal. A: Chem. 1997, 116,
X. Wu, J. Liu, X. Li, A. Zanotti-Gerosa, F. Hancock, D. Vinci, J. Ruan,
J. Xiao, Angew. Chem. Int. Ed. 2006, 45, 6718 – 6722.
(a) D.-W. Tan, H.-X. Li, D. J. Young, J.-P. Lang, Tetrahedron 2016, 72,
4169 – 4176; (b) R. R. Donthiri, R. D. Patil, S. Adimurthy, Eur. J. Org.
Chem. 2012, 4457 – 4460; (c) G. Zhang, T. Irrgang, Th. Dietel, F.
Kallmeier, Rh. Kempe, Angew. Chem., Int. Ed. 2018, 130, 9269 –
9273.
199 − 207; (e) J. Wu, F. Wang, Y. Ma, X. Cui, L. Cun, J. Zhu, J. Deng,
B. Yua, Chem. Commun. 2006, 1766 − 1768; (f) O. Pablo, D. Guijarro,
G. Kovács, A. Lledós, G. Ujaque, M. Yus, Chem. Eur. J. 2012, 18,
1969 – 1983.
[17]
(a) M. Kitamura, D. Lee, S. Hayashi, S. Tanaka, M. Yoshimura, J. Org.
Chem. 2002, 67, 8685 – 8687; (b) R. Kadyrov, T. H. Riermeier, Angew.
Chem. Int. Ed. 2003, 42, 5472 – 5474; (c) G. D. Williams, R. A. Pike,
C. E. Wade, M. Wills, Org. Lett. 2003, 5, 4227 – 4230; (e) S. Ogo, K.
Uehara, T. Abura, S. Fukuzumi, J. Am. Chem. Soc. 2004, 126, 3020 –
[33]
Gaussian 09 (Revision C.01), M. J. Frisch, G. W. Trucks, H. B.
Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani,
V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato,
X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L.
Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A.
Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E.
Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K.
Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M.
Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V.
Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O.
3021; (f) N. A. Strotman, C. A. Baxter, K. M. J. Brands, E. Cleator, S.
W. Krska, R. A. Reamer, D. J. Wallace, T. J. Wright, J. Am. Chem.
Soc. 2011, 133, 8362 – 8371; (g) D. Gnanamgari, A. Moores, E.
Rajaseelan, R. H. Crabtree, Organometallics 2007, 26, 1226 – 1230;
(h) C. Wang, A. Pettman, J. Bacsa, J. Xiao, Angew. Chem. Int. Ed.
This article is protected by copyright. All rights reserved.