10.1002/anie.201813305
Angewandte Chemie International Edition
COMMUNICATION
Two mechanisms are consistent with the experimental rate law.
In the “ester-first” mechanism of Scheme 4A, [La]–H and ester
interact reversibly, likely via insertion/β-H elimination steps,
followed by irreversible reaction of the [La]–OCHR(OR)
intermediate and HBpin. Alternatively, an “HBpin-first”
mechanism involves [La]–H and HBpin reversibly binding to give
a lanthanum hydridoborate [La]{H2Bpin}, followed by irreversible
interaction with ester (Scheme 4B). In both cases, the
combination of ester and HBpin is slower than the second addition
of HBpin and C–O cleavage, as required by the rate law.
of [HBpin] and [ester]. Moreover, the data and the interpretation
of rate law of eq. 2 show that experimental rate laws change
drastically with variations in reactant concentration, with orders in
[HBpin] and [ester] varying from zero to one. In addition, the
apparent inhibition by HBpin is a natural consequence of
reversible formation of [La]{H2Bpin} adducts.
In conclusion, while lanthanum hydride is chemically competent
for hydroboration of ketones, likely via carbonyl insertion and
alkoxide transfer to boron, [La]{H2Bpin} is required for the more
challenging reductions of esters and epoxides.
A.
O
OCH2R
H
k1
+
[La]–H
[La]
O
CH2R
Acknowledgements
R
O
k–1
R
OCH2R
H
k2
This research was supported by the U.S. Department of Energy,
Office of Basic Energy Sciences, Division of Chemical Sciences,
Geosciences, and Biosciences. The Ames Laboratory is operated
for the U.S. Department of Energy by Iowa State University under
Contract No. DE-AC02-07CH11358.
RH2CO
H
[La]
O
+ HBpin
O
Bpin
+ [La]–H
turnover-limiting
R
R
RH2CO
H
2
+
Bpin
HBpin
O
R
OBpin
fast
R
Keywords: hydroboration • C–O bond cleavage • lanthanum
B.
hydride • homogeneous catalysis • saturation kinetics
k1
k–1
+ HBpin
[La]H2Bpin
[La]–H
[1]
[2]
C. C. Chong, R. Kinjo, ACS Catal. 2015, 5, 3238-3259.
H
[La]
k2
a) M. S. Hill, D. J. Liptrot, C. Weetman, Chem. Soc. Rev. 2016, 45, 972-
988; b) V. Montiel-Palma, M. Lumbierres, B. Donnadieu, S. Sabo-
Etienne, B. Chaudret, J. Am. Chem. Soc. 2002, 124, 5624-5625; c) S.
Lachaize, K. Essalah, V. Montiel-Palma, L. Vendier, B. Chaudret, J.-C.
Barthelat, S. Sabo-Etienne, Organometallics 2005, 24, 2935-2943; d) T.
J. Hebden, M. C. Denney, V. Pons, P. M. B. Piccoli, T. F. Koetzle, A. J.
Schultz, W. Kaminsky, K. I. Goldberg, D. M. Heinekey, J. Am. Chem.
Soc. 2008, 130, 10812-10820; e) L. Koren-Selfridge, H. N. Londino, J. K.
Vellucci, B. J. Simmons, C. P. Casey, T. B. Clark, Organometallics 2009,
28, 2085-2090; f) M. Arrowsmith, M. S. Hill, T. Hadlington, G. Kociok-
Köhn, C. Weetman, Organometallics 2011, 30, 5556-5559; g) S.
Schnitzler, T. P. Spaniol, J. Okuda, Inorg. Chem. 2016, 55, 12997-13006;
h) C. Xue, Y. Luo, H. Teng, Y. Ma, M. Nishiura, Z. Hou, ACS Catal. 2018,
8, 5017-5022.
O
Bpin
H
O
C
+
[La]H2Bpin
CH2R
R
O
turnover-limiting
RH2CO
+
R
H
[La]
+ HBpin
[La]–H
Bpin
H
2
R
OBpin
O
C
fast
RH2CO
R
Scheme 4. Mechanisms for 1-catalyzed hydroboration of esters. Mechanisms
A and B are both consistent with kinetic experiments, but A is less likely based
on reactivity of in situ generate hydridolanthanum species.
Several points favor the mechanism of Scheme 4B (See SI).
Esters are not reactive toward hydridolanthanum compounds 2
and 3, whereas ketones react readily. The catalytic activity for
ester hydroboration is engendered in 2 and 3 by HBpin. Moreover,
2 is solubilized by HBpin, although a direct interaction between
these species is not detected. In contrast, esters do not solubilize
compound 2, suggesting that these compounds do not interact.
Although the slower nature of epoxide hydroboration has
limited extensive kinetic studies, and the mechanism of this
reaction is distinct from that of ester hydroboration, linear second-
order plots of ln{[HBpin]/[styrene oxide]} vs time suggest a similar
rate law. In this context, reversible cleavage of a C–O bond in the
epoxide by the hydridolanthanum catalyst, in analogy to the first
step of Scheme 4A (see Figure S45A), appears unlikely. Thus,
the mechanisms of Schemes 4B and S45B are favored by
analogous rate laws.
[3]
a) M. Arrowsmith, T. J. Hadlington, M. S. Hill, G. Kociok-Kohn, Chem.
Commun. 2012, 48, 4567-4569; b) M. Arrowsmith, M. S. Hill, G. Kociok-
Köhn, Chem. Eur. J. 2013, 19, 2776-2783; c) A. S. Dudnik, V. L. Weidner,
A. Motta, M. Delferro, T. J. Marks, Nat Chem 2014, 6, 1100-1107; d) C.
Weetman, M. D. Anker, M. Arrowsmith, M. S. Hill, G. Kociok-Köhn, D. J.
Liptrot, M. F. Mahon, Chem. Sci. 2016, 7, 628-641; e) C. Weetman, M.
S. Hill, M. F. Mahon, Chem. Eur. J. 2016, 22, 7158-7162.
[4]
[5]
[6]
D. Mukherjee, A. Ellern, A. D. Sadow, Chem. Sci. 2014, 5, 959-964.
A. Rossin, M. Peruzzini, Chem. Rev. 2016, 116, 8848-8872.
a) S. Chen, D. Yan, M. Xue, Y. Hong, Y. Yao, Q. Shen, Org. Lett. 2017,
19, 3382-3385; b) V. L. Weidner, C. J. Barger, M. Delferro, T. L. Lohr, T.
J. Marks, ACS Catal. 2017, 7, 1244-1247.
[7]
a) A. A. Oluyadi, S. Ma, C. N. Muhoro, Organometallics 2012, 32, 70-78;
b) N. Eedugurala, Z. Wang, U. Chaudhary, N. Nelson, K. Kandel, T.
Kobayashi, I. I. Slowing, M. Pruski, A. D. Sadow, ACS Catal. 2015, 7399-
7414; c) S. Bagherzadeh, N. P. Mankad, Chem. Commun. 2016, 52,
3844-3846; d) G. Zhang, H. Zeng, J. Wu, Z. Yin, S. Zheng, J. C.
Fettinger, Angew. Chem. Int. Ed. 2016, 55, 14369-14372; e) D.
Mukherjee, H. Osseili, T. P. Spaniol, J. Okuda, J. Am. Chem. Soc. 2016,
138, 10790-10793; f) V. K. Jakhar, M. K. Barman, S. Nembenna, Org.
Lett. 2016, 18, 4710-4713; g) T. Zhang, K. Manna, W. Lin, J. Am. Chem.
Soc. 2016, 138, 3241-3249; h) S. R. Tamang, M. Findlater, J. Org. Chem.
2017, 82, 12857-12862; i) T. Bai, T. Janes, D. Song, Dalton Trans. 2017,
46, 12408-12412; j) Z. Huang, D. Liu, J. Camacho-Bunquin, G. Zhang,
The experimental rate law of eq. 1 is valid for the hydroboration
of all the aryl esters in this study, indicating one general
mechanism is operative. The kinetic studies, however, show that
comparisons of ternary experimental rate constants only partially
capture the relevant terms that describe relative catalytic
reactivity. Activity depends on rate constants and concentrations
4
This article is protected by copyright. All rights reserved.