epoxidation of alkenes using molecular oxygen and aldehyde.
The catalyst did not suffer from a leaching problem during
catalysis and could be recycled several times without loss of
activity or selectivity. In addition, the high selectivity, stability,
and resistance to catalyst deactivation of IRMOF-3[Mn]
demonstrated in epoxidation reactions for several important
alkenes provide strong encouragement for future exploration
of functionalized MOFs as useful heterogeneous catalysts.
This work was supported by a National Research Founda-
tion of Korea (NRF) grant funded by the Korean government
(MEST) (No. 2010-0012257).
Notes and references
1 N. L. Rosi, J. Eckest, M. Eddaoudi, D. T. Vodak, J. Kim,
M. O’Keeffe and O. M. Yaghi, Science, 2003, 300, 1127;
G. Ferey, Chem. Soc. Rev., 2008, 37, 191; B. Wang, C. Knobler,
´
H. Furukawa, M. O’Keeffe and O. M. Yaghi, Science, 2008, 319,
939.
2 J. Kim, S. Bhattacharjee, K. E. Jeong, S. Y. Jeong and W. S. Ahn,
Chem. Commun., 2009, 3904; D. Jiang, T. Mallat, D. M. Meier,
A. Urakawa and A. Baiker, J. Catal., 2010, 270, 26; A. Corma,
Fig. 2 Effect of temperature on the catalytic activity of IRMOF-3[Mn]
using molecular oxygen (1 atm) and trimethylacetaldehyde in toluene
(reaction conditions: 1 mmol cyclohexene, 2 mmol trimethylacetaldehyde,
0.015 g catalyst, 5 ml toluene, and 6 h).
H. Garcı
´
4606; A. Dhakshinamoorthy, M. Alvaro and H. Garcı
Chem.–Eur. J., 2010, 16, 8530; K. Leus, I. Muylaert,
M. Vandichel, G. B. Marin, M. Waroquier, V. Van Speybroeck
and P. Van Der Voort, Chem. Commun., 2010, 46, 5085.
3 (a) M. J. Ingleson, J. P. Barrio, J. B. Guilbaud, Y. Z. Khimyak and
M. J. Rosseinsky, Chem. Commun., 2008, 2680; (b) M. H. Alkordi,
Y. Liu, R. W. Larsen, J. F. Eubank and M. Eddaoudi, J. Am.
Chem. Soc., 2008, 130, 12639; (c) Z. Wang and S. M. Cohen, Chem.
Soc. Rev., 2009, 38, 1315; (d) X. Zhang, F. X. Llabres i xamena and
´
A. Corma, J. Catal., 2009, 265, 155; (e) W. Lin, Top. Catal., 2010,
53, 869.
4 (a) M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter,
M. O’Keeffe and O. M. Yaghi, Science, 2002, 295, 469; (b) J. L. C.
Rowsell and O. M. Yaghi, J. Am. Chem. Soc., 2006, 128, 1304.
5 (a) K. K. Tanabe, Z. Wang and S. M. Cohen, J. Am. Chem. Soc.,
2008, 130, 8508; (b) D. Britt, C. Lee, F. J. Uribe-Romo,
H. Furukawa and O. M. Yaghi, Inorg. Chem., 2010, 49, 6387;
(c) J. G. Nguyen, K. K. Tanabe and S. M. Cohen, CrystEngComm,
2010, 12, 2335.
6 R. A. Sheldon, in Aspects of Homogeneous Catalysis, ed. R. Ugo,
1981, Reidel, Dordrech, vol. 4; R. A. Sheldon, in The Chemistry of
Functional groups, ed. S. Patai, 1983, Wiley, New York.
7 F. Fache, E. Schulz, M. L. Tommasino and M. Lemaire, Chem.
Rev., 2000, 100, 2159.
a and F. X. Llabre
´
s i xamena, Chem. Rev., 2010, 110,
´
epoxide than in the other two cyclic alkenes, cyclohexene and
cyclooctene.
a,
In order to asses the stability of IRMOF-3[Mn], epoxida-
tion reaction was tested by performing repeated reaction cycles
under the same reaction conditions. At the end of each
reaction cycle, the catalyst was recovered by simple
decantation of the solution mixture followed by washing with
a solvent (5 Â 10 ml). After being immersed in the solvent for
12 h and dried at 90 1C under vacuum for 12 h, the catalyst
was reused. As shown in Table 1, conversion and selectivity to
epoxide were almost identical irrespective of the number of
cycles performed. Further confirmation on the stability
of Mn in MOF was made through a hot filtering experiment
(see Fig. S6, ESIw). No manganese in the filtrate after the
reaction was detected by ICP measurement. The X-ray powder
diffraction pattern and FTIR spectra of the solid catalyst after
reuse were also indistinguishable from those of the fresh
catalyst (see Fig. S2 and S7, ESIw), suggesting that no
structural deterioration or organic and metal complex
decomposition occurred after catalytic reaction.
8 (a) M. J. Sabater, A. Corma, A. Domenech, V. Fornes and
H. Garcıa, Chem. Commun., 1997, 1285; (b) B. M. Choudary,
´
The cyclohexene epoxidation was also carried out using free
Mn(acac)2 (0.0002 to 0.0010 mmol) at 40 1C under identical
reaction conditions. The conversion and selectivity to epoxide
were much lower [42% conversion and 66% epoxide selectivity
using 0.0010 mmol Mn(acac)2] than with the IRMOF-3[Mn].
Comparison of the performances by other Mn-containing
catalysts for cyclohexene epoxidation showed that the present
catalyst gave much higher conversion and selectivity to
epoxide than those reported for an alumina-supported
Mn(acac)2 complex.14a The present catalyst also provided
higher or comparable selectivity of epoxide than those
previously reported for a well-known Mn(III)–salen complex
immobilized to a layered double hydroxide or MCM-41.14b,c
In conclusion, a new and simple approach to one-step post-
functionalization of IRMOF-3 with a manganese(II) acetyl-
actonate complex was developed. The structure of IRMOF-3
was retained after post-functionalization. The new material,
IRMOF-3[Mn], showed high activity and selectivity in the
N. S. Chowdari, M. L. Kantam and P. L. Santhi, Catal. Lett.,
2001, 76, 213; (c) S. Bhattacharjee, T. J. Dines and J. A. Anderson,
J. Catal., 2004, 225, 398; (d) A. R. Silva, K. Wilson,
A. C. Whitwood, J. H. Clark and C. Freire, Eur. J. Inorg. Chem.,
2006, 1275; (e) M. Lakshmi Kantam, B. Kavita, V. Neeraja,
Y. Haritha, M. K. Chaudhuri and S. K. Dehury, Tetrahedron
Lett., 2003, 44, 9029.
9 Z. Wang and S. M. Cohen, Angew. Chem., Int. Ed., 2008, 47, 4699.
10 R. Mukhopadhyay, S. Bhattacharjee, C. K. Pal, S. Karmakar and
R. Bhattacharyya, J. Chem. Soc., Dalton Trans., 1997, 2267.
´
11 R. Castarlenas, M. A. Esteruelas, M. Martın and L. A. Oro,
J. Organomet. Chem., 1998, 564, 241.
12 P. Oliveira, A. Machado, A. M. Ramos, I. M. Fonseca, F. M. Braz
Fernandes, A. M. Botelho do Rego and J. Vital, Catal. Commun.,
2007, 8, 1366.
13 Y. Yamada, K. Imagawa, T. Nagata and T. Mukaiyama, Chem.
Lett., 1992, 2231.
14 (a) M. Salavati-Niasari, F. Farzaneh and M. Ghandi, J. Mol.
Catal. A: Chem., 2002, 186, 101; (b) S. Bhattacharjee and
J. A. Anderson, J. Mol. Catal. A: Chem., 2006, 249, 103;
(c) Y. Zhang, J. Zhao, L. He, D. Zhao and S. Zhang, Microporous
Mesoporous Mater., 2006, 94, 159.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 3637–3639 3639