4
06
J.A. Lopez-Sanchez et al. / Applied Catalysis A: General 391 (2011) 400–406
4
. Conclusions
[15] K. Mori, T. Hara, T. Mizugaki, K. Ebitani, K. Kaneda, J. Am. Chem. Soc. 126 (2004)
0657–10666.
16] H. Tsunoyama, H. Sakurai, Y. Negishi, T. Tsukuda, Journal of the American Chem-
ical Society 127 (2005) 9374–9375.
[17] A. Abad, C. Almela, A. Corma, H. Garcia, Tetrahedron 62 (2006) 6666–6672.
1
[
The oxidation of benzyl alcohol, hydrogen peroxide synthesis
and oxidation of CO have been investigated using three methods for
the synthesis of monometallic and bimetallic-supported nanopar-
ticles (a) impregnation, (b) a colloidal sol-immobilisation method
and (c) a deposition–precipitation method using urea. A strong syn-
ergistic effect is evident with the addition of Pd to Au, especially
in the case in the synthesis of hydrogen peroxide. For bimetal-
lic nanoparticles, titania is an inferior support to carbon for the
oxidation of benzyl alcohol reaction and hydrogen peroxide syn-
thesis. In addition, the sol-immobilised supported catalysts were
tested for CO oxidation and it was observed that it is possible to
activate the supported colloidal catalysts after a suitable thermal
treatment to partially remove protective PVA ligands. For CO oxida-
tion, the addition of palladium to gold is not beneficial in terms of
catalyst activity. We also report the use a deposition–precipitation
method using urea for the synthesis of gold and gold–palladium
supported nanoparticles and show that by choosing an appropri-
ate heat pre-treatment procedure it is possible to obtain very active
catalysts for CO oxidation and as well as for hydrogen peroxide
synthesis and benzyl alcohol oxidation. For this latter technique
gold–palladium deposited on a zeolite H-ZSM5 support gave a cat-
alyst that had the same product distribution but higher activities
than their titania-supported analogues. Finally, the effect of heat
treatment showed that CO oxidation is more sensitive to the pre-
cise heat treatment temperature than hydrogen peroxide synthesis,
suggesting that the CO oxidation is a reaction that is significantly
more sensitive to the particle size than the other reactions we have
investigated.
[
[
[
18] A. Biffis, S. Cunial, P. Spontoni, L. Prati, J. Catal. 251 (2007) 1–6.
19] P. Haider, A. Baiker, J. Catal. 248 (2007) 175–187.
20] J. Chen, Q. Zhang, Y. Wang, H. Wan, Adv. Synth. Catal. 350 (2008) 453–464.
[21] M. Schrinner, S. Proch, Y. Mei, R. Kempe, N. Miyajima, M. Ballauff, Adv. Mater.
20 (2008) 1928–1933.
[
22] C. Lucchesi, T. Inasaki, H. Miyamura, R. Matsubara, S. Kobayashi, Adv. Synth.
Catal. 350 (2008) 1996–2000.
[23] C.D. Pina, E. Falletta, M. Rossi, J. Catal. 260 (2008) 384–386.
[24] N. Dimitratos, J.A. Lopez-Sanchez, D. Lennon, F. Porta, L. Prati, A. Villa, Catal.
Lett. 108 (2006) 147–153.
[
25] N. Dimitratos, J.A. Lopez-Sanchez, D. Morgan, A.F. Carley, L. Prati, G.J. Hutchings,
Catal. Today 122 (2007) 317–324.
[26] W. Hou, N.A. Dehm, R.W. Scott, J. Catal. 253 (2008) 22–27.
[
[
27] T. Ishida, M. Nagaoka, T. Akita, M. Haruta, Chem. Eur. J. 14 (2008) 8456–8460.
28] M.D. Hughes, Y.-J. Xu, P. Jenkins, P. McMorn, P. Landon, D.I. Enache, A.F. Carley,
G.A. Attard, G.J. Hutchings, F. King, E.H. Stitt, P. Johnston, K. Griffin, C.J. Kiely,
Nature 437 (2005) 1132–1135.
[
[
[
[
29] A. Abad, P. Conception, A. Corma, H. Garcia, Angew. Chem. Int. Ed. 44 (2005)
4066–4069.
30] T. Ishikara, Y. Ohura, S. Yoshida, Y. Hata, H. Nishiguchi, Y. Takita, Appl. Catal. A:
Gen. 291 (2005) 215–221.
31] C. Burato, P. Centomo, M. Rizzoli, A. Biffis, S. Campestrini, B. Corain, Adv. Synth.
Catal. 348 (2006) 255–259.
32] Y. Nomura, T. Ishihara, Y. Hata, K. Kitawaki, K. Kaneko, H. Matsumoto, Chem-
SusChem 1 (2008) 619–621.
[33] J.K. Edwards, G.J. Hutchings, Angew. Chem. Int. Ed. 47 (2008) 9192–9198.
[
[
34] A. Corma, P. Serna, Science 313 (2006) 332–334.
35] D.I. Enache, J.K. Edwards, P. Landon, B. Solsona-Espriu, A.F. Carley, A.A. Herz-
ing, M. Watanabe, C.J. Kiely, D.W. Knight, G.J. Hutchings, Science 311 (2006)
362–365.
[
36] J.A. Lopez-Sanchez, N. Dimitratos, P. Miedziak, E. Ntainjua, J.K. Edwards, D. Mor-
gan, A.F. Carley, R. Tiruvalam, C.J. Kiely, G.J. Hutchings, Phys. Chem. Chem. Phys.
1
0 (2008) 1921–1930.
[37] N. Dimitratos, J.A. Lopez-Sanchez, G.J. Hutchings, Top. Catal. 52 (2009) 258–
68.
2
[
38] N. Dimitratos, J.A. Lopez-Sanchez, J.M. Anthonykutty, G. Brett, A.F. Carley, R.C.
Tiruvalam, A.A. Herzing, C.J. Kiely, D.W. Knight, G.J. Hutchings, Phys. Chem.
Chem. Phys. 11 (2009) 4952–4961.
Acknowledgements
[
[
[
[
39] N. Dimitratos, J.A. Lopez-Sanchez, J.M. Anthonykutty, G. Brett, A.F. Carley, S.H.
Taylor, D.W. Knight, G.J. Hutchings, Green Chem. 11 (2009) 1209–1216.
40] S. Bawaked, N.F. Dummer, N. Dimitratos, D. Bethell, Q. He, C.J. Kiely, G.J. Hutch-
ings, Green Chem. 11 (2009) 1037–1044.
41] J.K. Edwards, B. Solsona, E. Ntainjua, A.F. Carley, A.A. Herzing, C.J. Kiely, G.J.
Hutchings, Science 323 (2009) 1037–1041.
We acknowledge the financial support of the Engineering
and Physical Sciences Research Council and the European Union
(
project AURICAT).
References
42] N. Dimitratos, J.A. Lopez-Sanchez, D. Morgan, A.F. Carley, R. Tiruvalam, C.J. Kiely,
D. Bethell, G.J. Hutchings, Phys. Chem. Chem. Phys. 11 (2009) 5142–5153.
[
[
[
[
[
[
[
[
1] A.S.K. Hashmi, G.J. Hutchings, Angew. Chem. Int. Ed. 45 (2006) 7896–7936.
2] G.C. Bond, D.T. Thompson, Catal. Rev. Sci. Eng. 41 (1999) 319–388.
3] M. Haruta, Gold Bull. 37 (2004) 27–36.
[43] D.I. Enache, D. Barker, J.K. Edwards, S.H. Taylor, D.W. Knight, A.F. Carley, G.J.
Hutchings, Catal. Today (2007) 407–411.
[44] A. Abad, C. Almela, A. Corma, H. Garcia, Chem. Commun. (2006) 3178–3180.
[45] T. Mallat, A. Baiker, Chem. Rev. 104 (2004) 3037–3058.
[46] C. Keresszegi, T. Bürgi, T. Mallat, A. Baiker, J. Catal. 211 (2002) 244–251.
[49] J.W. Geus, A.J. van Dillen, in: G. Ert, et al. (Eds.), Preparation of Solid Catalysts,
Wiley-VCH, Weinheim, Germany, 1999, pp. 460–487.
[50] M. Haruta, CATTECH 6 (2002) 102–115.
4] A.S.K. Hashmi, Gold Bull. 37 (2004) 51–65.
5] M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Chem. Lett. 16 (1987) 405–408.
6] F. Moreau, G.C. Bond, A.O. Taylor, Chem. Commun. (2004) 1642–1643.
7] F. Moreau, G.C. Bond, A.O. Taylor, J. Catal. 231 (2005) 105–114.
8] W. Yan, B. Chen, S.M. Mahurin, S. Dai, S.H. Overbury, Chem. Commun. (2004)
1
918–1919.
[51] R. Zanella, C. Louis, Catal. Today 107–108 (2005) 768–777.
[52] R. Zanella, S. Giorgio, C.-H. Shin, C.R. Henry, C. Louis, J. Catal. 222 (2004)
357–367.
[
9] S. Carrettin, P. Concepción, A. Corma, J.M. López Nieto, V.F. Puntes, Angew.
Chem. Int. Ed. 43 (2004) 2538–2540.
[
[
10] J. Guzman, B.C. Gates, J. Am. Chem. Soc. 126 (2004) 2672–2673.
11] P. Mohapadra, J. Moma, K.M. Parida, W.A. Jordaan, M.S. Scurrell, Chem. Com-
mun. (2007) 1044–1046.
[53] N. Dimitratos, A. Villa, C.L. Bianchi, L. Prati, M. Makkee, Appl. Catal. A: Gen. 311
(2006) 185–192.
[54] M. Comotti, W.-C. Li, B. Spliethoff, F. Schüth, J. Am. Chem. Soc. 128 (2006)
917–924.
[12] H.-L. Jiang, B. Liu, T. Akita, M. Haruta, H. Sakurai, Q. Xu, J. Am. Chem. Soc. 131
(
2009) 11302–11303.
[55] J.-D. Grunwaldt, C. Kiener, C. Wögerbauer, A. Baiker, J. Catal. 181 (1999)
223–232.
[
[
13] G.J. Hutchings, J. Catal. 96 (1985) 292–295.
14] A.K. Sinha, S. Seelan, S. Tsubota, M. Haruta, Angew. Chem. Int. Ed. 43 (2004)
[56] J.-D. Grunwaldt, M. Maciejewski, O.S. Becker, P. Fabrizioli, A. Baiker, Journal of
Catalysis 186 (1999) 458–469.
1
546–1548.