5322
G. A. Heropoulos, C. Villalonga-Barber / Tetrahedron Letters 52 (2011) 5319–5322
6. (a) Hashmi, A. S.; Lothschütz, C.; Ackermanm, M.; Doepp, R.; Anantharaman, S.;
Ph
Marchetti, B.; Bertagnolli, H.; Rominger, F. Chem. Eur. J. 2010, 16, 8012–8019;
(b) Rosa, J. N.; Reddy, S.; Candeias, N. R.; Cal, P. M. S. D.; Gois, P. M. P. Org. Lett.
2010, 12, 2686–2689; (c) Yoo, W.-J.; Li, C.-J. Tetrahedron Lett. 2007, 48, 1033–
1035; (d) Kiyooka, S.; Wada, Y.; Ueno, M.; Yokoyama, T.; Yokoyama, R.
Tetrahedron 2007, 63, 12695–12701 (See also citations in Ref. 2).
7. (a) Zhang, M.; Zhang, S.; Zhang, G.; Chen, F.; Cheng, J. Tetrahedron Lett. 2011, 52,
2480–2483; (b) Liu, C.; Wang, J.; Meng, L.; Deng, Y.; Li, Y.; Lei, A. Angew. Chem.,
Int. Ed. 2011, 50, 5144–5148; (c) Lerebours, R.; Wolf, C. J. Am. Chem. Soc. 2006,
128, 13052–13053; (d) Qin, C.; Wu, H.; Chen, J.; Liu, M.; Cheng, J.; Su, W.; Ding,
J. Org. Lett. 2008, 10, 1537–1540; (e) Wei, L.-L.; Wei, L.-M.; Pan, W.-B.; Wu, M.-J.
Synlett 2004, 1497–1502.
8. Aït-Mohand, S.; Hénin, F.; Muzart, J. Tetrahedron Lett. 1995, 36, 2473–2476.
9. Nagashim, H.; Sato, K.; Tsuji, J. Tetrahedron 1985, 41, 5645–5651.
10. Liégault, B.; Renaud, J.-L.; Bruneau, C. Chem. Soc. Rev. 2008, 37, 290–299.
11. (a) Landers, B.; Berini, C.; Want, C.; Navarro, O. J. Org. Chem. 2011, 76, 1390–
1397; (b) Guram, A. S.; Bei, X.; Turner, H. W. Org. Lett. 2003, 5, 2485–2487; (c)
Tamaru, Y.; Yamada, Y.; Inoue, K.; Yamamoto, Y.; Yoshida, Z.-I. J. Org. Chem.
1983, 48, 1286–1292.
LnPd(0)
Cl
Ph
C
LnPd
Ph
Ln(Cl)Pd
Ph
A
H
O
R
O
R
OEt
LnPd
Ph
Ln(Cl)Pd
EtOH
Ph
O
O
H
OEt
B
12. Rodríguez, N.; Medio-Simón, M.; Asensio, G. Adv. Synth. Catal. 2007, 349, 987–
991.
13. See the original procedure where the intermediate is isolated: Vutukuri, D. R.;
Bharathi, P.; Yu, Z.; Rajasekaran, K.; Tran, M.-H.; Thayumanavan, S. J. Org. Chem.
2003, 68, 1146–1149.
R
R
HCl
Scheme 2. Proposed reaction mechanism.
14. For a successful example of this one-pot sequence, see: Barnickel, B.; Schobert,
R. J. Org. Chem. 2010, 75, 6716–6719.
15. Cannizzaro, S. Liebigs Ann. Chem. 1853, 88, 129–130.
16. Asao, N.; Nogami, T.; Takahashi, K.; Yamamoto, Y. J. Am. Chem. Soc. 2002, 124,
764–765.
17. Transition metal catalyzed acetalization of aldehydes and ketones has been
reported, see: (a) Gregg, B. T.; Golden, K. C.; Quinn, J. F. Tetrahedron 2008, 64,
3287–3295; (b) Cataldo, M.; Nieddu, E.; Gavagnin, R.; Pinna, F.; Strukul, G. J.
Mol. Catal. 1999, 142, 305–316.
18. Acetal formation has been reported as a competing reaction when electron-
deficient benzaldehydes were used in a gold-catalyzed oxidative esterification,
see Ref. 6a.
19. Ninety two percent conversion for 3-nitrobenzaldehyde [ester (5j): benzyl
alcohol (6j) 89:11] and 71% for 4-trifluoromethylbenzaldehyde [ester (5k):
benzyl alcohol (6k) 96:4].
palladium(0) species to generate benzylpalladium complex A,
which then undergoes coordination to the aldehyde and allows
the addition of ethanol onto the carbonyl group to produce the
oxypalladium complex B. b-Hydride elimination generates the es-
ter and the palladium hydride species C which through reductive
elimination affords toluene and regenerates the Pd catalyst
(Scheme 2).
In summary, we have demonstrated a facile and mild palla-
dium-catalyzed oxidation of aldehydes into esters. Our methodol-
ogy employs a low loading of palladium and the readily available
co-oxidant is fully transformed into toluene, resulting in an easy
to work-up and purified reaction. Moreover, this method does
not require inert conditions or the use of ligands and works well
for aromatic, saturated and unsaturated aldehydes.28
20. Ninety
three
percent
conversion
for
both
nonanal
and
3-
phenylpropionaldehyde.
21. Sixty six percent conversion for 4-methylbenzaldehyde and 55% for 4-
methoxybenzaldehyde.
22. Bucos, M.; Villalonga-Barber, C.; Micha-Screttas, M.; Steele, B. R.; Screttas, C. G.;
Heropoulos, G. A. Tetrahedron 2010, 66, 2061–2065.
23. Products of solvolysis were detected by GC and NMR.
24. The 1H NMR spectrum of the crude product showed no signal at 4.55 ppm
Acknowledgment
corresponding to BnCl and the appearance of
corresponding to toluene.
a singlet at 2.33 ppm
25. Lowering further the catalyst loading to 0.5 mol % decreased the conversion to
78%.
26. (a) Chen, J.; Zhang, Y.; Yang, L.; Zhang, X.; Liu, J.; Li, L.; Zhang, H. Tetrahedron
2007, 63, 4266–4270; (b) Zask, A.; Helquist, P. J. Org. Chem. 1978, 43, 1619–
1620.
This work was supported by funding provided by the European
Commission for the FP7-REGPOT-2009-1 Project ‘ARCADE’ (Grant
Agreement No. 245866).
27. Heck reactions have been reported on unsaturated substrates when
bromobenzene was used as co-oxidant, see Ref. 11b.
References and notes
28. General procedure: A 10 mL reaction vessel was charged in air with Pd(PPh3)4
(6 mg, 1 mol %), aldehyde (0.5 mmol), K2CO3 (207 mg, 1.5 mmol), benzyl
1. Larock, R. C. Comprehensive Organic Transformations; VCH: New York, 1999.
2. For a recent review, see: Ekoue-Kovi, K.; Wolf, C. Chem. Eur. J. 2008, 14, 6302–
6315.
3. (a) O’Conner, B.; Just, G. Tetrahedron Lett. 1987, 28, 3235–3236; (b) Abiko, A.;
Roberts, J. C.; Takemasa, S.; Masamune, S. Tetrahedron Lett. 1986, 27, 4537–
4540.
4. (a) Malik, P.; Chakraborty, D. Tetrahedron Lett. 2010, 51, 3521–3523; (b) Wu, X.-
F.; Darcel, C. Eur. J. Org. Chem. 2009, 1144–1147; (c) Gopinath, R.; Patel, B. K.
Org. Lett. 2000, 2, 577–579.
5. (a) Sharma, R. K.; Sharma, C. J. Macromol. Sci. A 2011, 48, 155–163; (b) Reddy, K.
R.; Venkateshwar, M.; Maheswari, C. U.; Prashanthi, S. Synth. Commun. 2010,
40, 186–195; (c) Travis, B. R.; Sivakumar, M.; Hollist, O.; Borhan, B. Org. Lett.
2003, 5, 1031–1034.
chloride (70 lL, 0.6 mmol) and EtOH (1 mL). The vessel was sealed and
submitted to microwave irradiation for 30 min at 90 °C, using an initial power
of 30 W. (Microwave reactions were carried out with a CEM Discover 300 W
monomode microwave instrument. The closed vessels used were special glass
tubes with self-sealing septa that controlled pressure with appropriate sensors
on the top (outside the vial). The temperature was monitored through a non-
contact infrared sensor centrally located beneath the cavity floor.) The mixture
was then allowed to cool to room temperature, filtered over a pad of CeliteÒ
and rinsed with EtOH (5 mL). The filtrate was concentrated in vacuo and the
product was purified by flash chromatography on silica gel (CH2Cl2/hexane).