Linde´n, M. Johansson, N. Hermanns and J.-E. Ba¨ckvall, Efficient and
selective sulfoxidation by hydrogen peroxide, using a recyclable flavin-
[BMIm]PF6 catalytic system, J. Org. Chem., 2006, 71, 3849; (e) Y.
Imada, H. Iida, S. Ono, Y. Masui and S.-I. Murahashi, Flavin-catalyzed
oxidation of amines and sulfides with molecular oxygen: biomimetic
green oxidation, Chem.–Asian J., 2006, 1, 136; (f) A. A. Linde´n, N.
Hermanns, S. Ott, L. Kru¨ger and J.-E. Ba¨ckvall, Preparation and
redox properties of N,N,N-1,3,5-trialkylated flavin derivatives and their
activity as redox catalysts, Chem.–Eur. J., 2005, 11, 112; (g) Y. Imada, H.
Iida, S.-I. Murahashi and T. Naota, An Aerobic, Organocatalytic, and
Chemoselective Method for Baeyer–Villiger Oxidation, Angew. Chem.,
2005, 117, 1732, (Angew. Chem., Int. Ed., 2005, 44, 1704); (h) Y. Imada,
H. Iida, S. Ono and S.-I. Murahashi, Flavin catalyzed oxidations of
sulfides and amines with molecular oxygen, J. Am. Chem. Soc., 2003,
125, 2868; (i) S.-I. Murahashi, S. Ono and Y. Imada, Asymmetric
Baeyer–Villiger Reaction with Hydrogen Peroxide Catalyzed by a Novel
Planar-Chiral Bisflavin, Angew. Chem., 2002, 114, 2472, (Angew. Chem.,
Int. Ed., 2002, 41, 2366); (j) K. Bergstad and J.-E. Ba¨ckvall, Mild
and Efficient Flavin-Catalyzed H2O2 Oxidation of Tertiary Amines
to Amine N-Oxides, J. Org. Chem., 1998, 63, 6650; (k) C. Mazzini, J.
Lebreton and R. Furstoss, Flavin-catalyzed Baeyer–Villiger reaction
of ketones: oxidation of cyclobutanones to.gamma. lactones using
hydrogen peroxide, J. Org. Chem., 1996, 61, 8; (l) S.-I. Murahashi,
T. Oda and Y. Masui, Flavin-catalyzed oxidation of amines and sulfur
compounds with hydrogen peroxide, J. Am. Chem. Soc., 1989, 111,
5002; (m) S. Shinkai, Y.-I. Ishikawa and O. Manabe, Flavin-Zr4+
complex as oxidation catalyst, Chem. Lett., 1982, 809; (n) S. Ball and
T. C. Bruice, Oxidation of amines by a 4a-hydroperoxyflavin, J. Am.
Chem. Soc., 1980, 102, 6498.
4 (a) R. Lechner and B. Ko¨nig, Oxidation and deprotection of primary
benzylamines by visible light flavin photocatalysis, Synthesis, 2010,
10, 1712–1718; (b) H. Schmaderer, P. Hilgers, R. Lechner and B.
Ko¨nig, Photo-oxidation of benzyl alcohols with immobilized flavins,
Adv. Synth. Catal., 2009, 351, 163; (c) J. Svoboda, H. Schmaderer
and B. Ko¨nig, Thiourea-Enhanced Flavin Photo-oxidation of Benzyl
Alcohol, Chem.–Eur. J., 2008, 14, 1854; (d) W. A. Massad, Y. Barbieri,
M. Romero and N. A. Garcia, Vitamin B2-sensitized photo-oxidation
of dopamine, Photochem. Photobiol., 2008, 84, 1201; (e) R. Cibulka, R.
Vasold and B. Ko¨nig, Catalytic photo-oxidation of 4-methoxybenzyl
alcohol with a flavin-zinc(II)-cyclen complex, Chem.–Eur. J., 2004, 10,
6223; (f) O. Lu, G. Bucher and W. Sander, Photoinduced interactions
between oxidized and reduced lipoic acid and riboflavin (vitamin B2),
ChemPhysChem, 2004, 5, 47; (g) C. B. Martin, M.-L. Tsao, C. M.
Hadad and M. S. Platz, The reaction of triplet flavin with indole. A
study of the cascade of reactive intermediates using density functional
theory and time resolved infrared spectroscopy, J. Am. Chem. Soc.,
2002, 124, 7226; (h) S. Fukuzumi, K. Yasui, T. Suenobu, K. Ohkubo,
M. Fujitsuka and O. Ito, Efficient Catalysis of Rare-Earth Metal Ions
in Photoinduced Electron-Transfer Oxidation of Benzyl Alcohols by
a Flavin Analogue, J. Phys. Chem. A, 2001, 105, 10501; (i) E. Silva,
A. M. Edwards and D. Pacheco, Visible light-induced photo-oxidation
of glucose sensitized by riboflavin, J. Nutr. Biochem., 1999, 10, 181;
(j) J. Garc´ıa and E. Silva, Flavin-sensitized photo-oxidation of amino
acids present in a parenteral nutrition infusate: protection by ascorbic
acid, J. Nutr. Biochem., 1997, 8, 341; (k) K. Tatsumi, H. Ichikawa and
S. Wada, Flavin-sensitized photo-oxidation of substituted phenols in
natural water, J. Contam. Hydrol., 1992, 9, 207; (l) S. Fukuzumi, K.
Tanii and T. Tanaka, Protonated pteridine and flavin analogs acting
as efficient and substrate-selective photocatalysts in the oxidation of
benzyl alcohol derivatives by oxygen, J. Chem. Soc., Chem. Commun.,
1989, 816.
7 (a) M. Sidheswaran and L. I. Tavlarides, Visible Light Photocatalytic
Oxidation of Toluene Using a Cerium-Doped Titania Catalyst, Ind.
Eng. Chem. Res., 2008, 47, 3346–3357; (b) D. Worsley, A. Mills, K.
Smith and M. G. Hutchings, Acid enhancement effect in the clean
oxidation of toluenes photocatalyzed by TiO2, J. Chem. Soc., Chem.
Commun., 1995, 1119–1120.
8 (a) J. Rosenthal, T. D. Luckett, J. M. Hodgkiss and D. G. Nocera,
Photocatalytic oxidation of hydrocarbons by a bis-iron(III)-mu-oxo
Pacman porphyrin using O2 and visible light, J. Am. Chem. Soc., 2006,
128, 6546–6547; (b) A. Itoh, T. Kodama, S. Hashimoto and Y. Masaki,
Oxidation of the methyl group at the aromatic nucleus with molecular
oxygen in the presence of N-bromosuccinimide under photoirradiation,
Synthesis, 2003, 2289–2291; (c) K. Ohkubo, K. Suga, K. Morikawa
and S. Fukuzumi, elective oxygenation of ring-substituted toluenes
with electron-donating and -withdrawing substituents by molecular
oxygen via photoinduced electron transfer, J. Am. Chem. Soc., 2003,
125, 12850–12859; (d) K. Ohkubo and S. Fukuzumi, 100% Selective
Oxygenation of p-Xylene to p-Tolualdehyde via Photoinduced Electron
Transfer, Org. Lett., 2000, 2, 3647–3650; (e) Y. Mao and A. Bakac,
Photocatalytic Oxidation of Toluene to Benzaldehyde by Molecular
Oxygen, J. Phys. Chem., 1996, 100, 4219–4223; (f) A. Albini and S. J.
Spreti, Photochemically induced oxygenation of methylbenzenes, citen-
zyls, and pinacols in the presence of naphthalene-1,4-dicarbonitrile,
J. Chem. Soc., Perkin Trans. 2, 1987, 1175–1179.
9 (a) G. Porcal, S. G. Bertolotti, C. M. Previtali and M. C. Encinas,
Electron transfer quenching of singlet and triplet excited states of
flavins and lumichrome by aromatic and aliphatic electron donors,
Phys. Chem. Chem. Phys., 2003, 5, 4123–4128; (b) S. Fukuzumi, S.
Kuroda and T. Tanaka, Catalytic effects of magnesium(2+) ion on
electron transfer reactions of photo-excited flavin analogs (3-methyl-
10-phenyl-5-deazaisoalloxazines and 3-methyl-10-phenylisoalloxazine)
with methyl and methoxy substituted benzenes, Chem. Lett., 1984,
417–420; (c) R. Traber, E. Vogelmann, S. Schreiner, T. Werner and
H. E. A. Kramer, Reactivity of excited states of flavin and 5-deazaflavin
in electron transfer reactions, Photochem. Photobiol., 1981, 33, 41–48.
10 It was shown in a previous study that flavin-mediated photo oxidation
of benzyl alcohols in MeCN is accelerated by catalytic amounts of
thiourea.4c This was not true for the oxidation of 4-methoxy toluene 3a
in MeCN in the presence of 30 mol% thiourea.
11 K. Tatsumi, H. Ichikawa and S. Wada, Flavin-sensitized photo-
oxidation of substituted phenols in natural water, J. Contam. Hydrol.,
1992, 9, 207–219.
12 Flavin-mediated photo oxidation of phenols gave full conversion of
starting phenols, but no products could be detected with GC-MS;
unpublished results.
13 P. Neta, H. Zemel, V. Madhavan and R. W. Fessenden, Rate constants
and mechanism of reaction of sulfate radical anion with aromatic
compounds, J. Am. Chem. Soc., 1977, 99, 163–164.
14 (a) J. Baier, T. Maisch, M. Maier, E. Engel, M. Landthaler and W.
Ba¨umler, Singlet oxygen generation by UVA light exposure of endoge-
nous photosensitizers, Biophys. J., 2006, 91, 1452–1459; (b) R. Huang,
E. Choe and D. B. Min, Effects of riboflavin photosensitized oxidation
on the volatile compounds of soymilk, J. Food Sci., 2006, 69, C733–
738; (c) M. Sikorski, E. Sikorska, R. G. Moreno, J. L. Bourdelande
and D. R. Worrall, Photophysics of methyl substituted alloxazines in
water: efficiency of singlet oxygen generation, J. Photochem. Photobiol.,
A, 2002, 149, 39–44; (d) J. M. King and D. B. Min, Riboflavin-
photosensitized singlet oxygen oxidation product of vitamin D2, J. Am.
Oil Chem. Soc., 2002, 79, 983–987; (e) P. C. Joshi, Comparison of
the DNA-damaging property of photosensitised riboflavin via singlet
oxygen (1O2) and superoxide radical O2-. mechanisms, Toxicol. Lett.,
1985, 26, 211–217.
5 (a) S. O. Mansoorabadi, C. J. Thibodeaux and H. Liu, The diverse
roles of flavin coenzymes - Nature’s most versatile thespians, J. Org.
Chem., 2007, 72, 6329; (b) Chemistry and Biochemistry of Flavoenzymes,
(Ed.: F. Mu¨ller), CRC, Boca Raton, 1991; (c) B. J. Fritz, S. Kasai and
K. Matsui, Photochemical properties of flavin derivatives, Photochem.
Photobiol., 1987, 45, 113; (d) A. Bowd, P. Byrom, J. B. Hudson and J. H.
Turnbull, Excited states of flavine coenzymes. III. Fluorescence, and
phosphorescence emissions, Photochem. Photobiol., 1968, 8, 1; (e) B.
Ko¨nig, M. Pelka, H. Zieg, T. Ritter, H. Bouas-Laurent, R. Bonneau
and J.-P. Desvergne, Photoinduced electron transfer in a phenothiazine-
riboflavin dyad assembled by zinc-imide coordination in water, J. Am.
Chem. Soc., 1999, 121, 1681.
15 K. I. Salokhiddinov, I. M. Byteva and G. P. Gurinovich, Zh. Prikl.
Spektrosk., 1981, 5, 892–897 and references cited.
16 When 0.001 m HCl was used as solvent instead of H2O, 29% yield 4a
and when 0.001 m NaOH was used 25% yield of 4a were obtained after
10 min of irradiation.
17 (a) P. Huszthy, G. Iszo´, K. Lempert, M. Katja´r-Peredy, M. Gyo¨r, A.
Rockenbauer and J. Tama`s, Single electron transfer initiated thermal
reactions of arylmethyl halides. Part 14. The reaction of triphenylmethyl
halides with tributylphosphine and tributylamine in apolar solvents,
J. Chem. Soc., Perkin Trans. 2, 1989, 1513–1520; (b) P. Huszthy, G. Iszo´,
K. Lempert, M. Katja´r-Peredy, M. Gyo¨r and A. Rockenbauer, Single-
electron-transfer-initiated thermal reactions of arylmethyl halides. Part
15. The reaction of triphenylmethyl bromide with potassium O-ethyl
6 D. B. McCormick, Flavine derivatives via bromination of the 8-methyl
substituent, J. Heterocycl. Chem., 1970, 7, 447.
This journal is
The Royal Society of Chemistry and Owner Societies 2010 Photochem. Photobiol. Sci., 2010, 9, 1367–1377 | 1375
©