K. Patel, A. Patel / Materials Research Bulletin 47 (2012) 425–431
431
even after the introduction of SBA. The multinuclear NMR (13C and
31P) studies indicate the formation of N ! Mn bond. The presence
of chirality in the synthesized material was confirmed by CD
spectroscopy and polarimeter. The above studies reveal the
attachment of SBA to the PW11Mn without any distortion of
structure as well as with retainment of chirality. The synthesized
hybrid material was successfully used as heterogeneous catalyst.
Our future aspect would be to increase the % selectivity and % ee for
the styrene oxide.
Table 6
% conversion and % selectivity for oxidation of styrene (with and without catalyst).
Catalyst
Reaction Conversion Selectivity (%)
time (h) (%)
ee (S)
(%)
Benzaldehyde Styrene
oxide
PW11Mn-SBA (2 h)
Filtrate (4 h)
2
4
27
27
81
81
19
19
10
10
Substrate; styrene (100 mmol); oxidant, O2 (4 ml/min); TBHP, 25 mg catalyst;
reaction time, 4 h; temperature, 80 8C.
Acknowledgement
Table 7
Mr. Ketan Patel is thankful to Department of Science and
Technology (SR/S1/IC-13/2007), New Delhi for financial support.
Recycling of the catalyst.
Catalyst
Reaction Conversion Selectivity (%)
time (h) (%)
ee (S)
(%)
References
Benzaldehyde Styrene
oxide
[1] (a) D. Hagrman, P. Hagrman, J. Zubieta, Angew. Chem. Int. Ed. 38 (1999) 3165;
(b) P. Hagrman, D. Hagrman, J. Zubieta, Angew. Chem. Int. Ed. 38 (1999) 2638;
(c) D. Loy, K. Shea, Chem. Rev. 95 (1995) 1431;
PW11Mn-SBA
4
4
52
50
89
90
11
10
10
9
R1-PW11Mn-SBA
(d) A.P. Wight, M.E. Davis, Chem. Rev. 102 (2002) 3589.
[2] Q. Wu, W. Chen, D. Liu, C. Liang, Y. Li, S. Wei Lin, E. Wang, Dalton Trans. 40 (2011)
56.
Substrate; styrene (100 mmol); oxidant, O2 (4 ml/min); TBHP, 25 mg catalyst;
reaction time, 4 h; temperature, 80 8C.
[3] (a) M.T. Pope, Heteropoly and Isopoly Oxometalates, Springer-Verlag, Berlin,
Germany, 1983;
conversion as well as % selectivity was found. On the basis of the
results, it can be said that the present catalysts are truly
heterogeneous in nature.
(b) M.T. Pope, A. Muller, Angew. Chem. Int. Ed. 30 (1991) 34;
(c) C.L. Hill, Chem. Rev. 98 (1998) 1;
(d) M.T. Pope, A. Muller, Polyoxometalate chemistry: from topology via self-
assembly to applications, Kluwer, Dordrecht, The Netherlands, 2001.
[4] (a) M.T. Pope, C.L. Hill, in: J. McCleverty, T.J. Meyer (Eds.), Comprehensive
Coordination Chemistry II, Pergamon Press, Oxford, 2004, pp. 635, 679;
(b) L. Bi, F. Hussain, U. Kortz, M. Sadakane, M. Dickman, Chem. Commun. (2004)
1420.
4.6. Regeneration and recycling of the catalyst
In order to investigate the stability of the catalyst during
oxidation reaction, the catalyst was separated by simple filtration
after completion of reaction. The separated catalyst was washed
with dichloromethane and dried at 100 8C (designated as R1-
PW11Mn-SBA). Oxidation of styrene was then carried out with the
recycled catalyst, under the optimized conditions (R1-PW11Mn-
SBA). The obtained results are presented in Table 7. As seen from
Table 7, the recycled catalyst did not show any appreciable change
in the activity, indicating that the catalyst is stable and can be
regenerated for repeated use.
Further, the recycled catalyst (R1-PW11Mn-SBA) was charac-
terized by FT-IR (Table 1) and 31P NMR (Fig. 3c) spectroscopy.
The FT-IR spectra of the R1-PW11Mn-SBA display all the
characteristic bands for the C–N, N–H stretching and N ! Mn
bond.
[5] U. Kortz, Chem. Commun. (2005) 2962.
[6] K. Fukaya, T. Yamase, Angew. Chem. 42 (2003) 654.
[7] T. Akutagawa, D. Enbo, S.I. Noro, L. Cronin, T. Nakamura, Coord. Chem. Rev. 251
(2007) 2547.
[8] (a) A. Dolbecq, E. Dumas, C.R. Mayer, P. Mialane, Chem. Rev. 110 (2010) 6009;
(b) Z. Peng, Angew. Chem. Int. Ed. 43 (2004) 930.
[9] (a) P. Gouzerh, A. Proust, Chem. Rev. 98 (1998) 77;
(b) H. liu, C.J. Gomez-Garcia, J. Peng, J. Sha, Y. Li, Y. Yan, Dalton Trans. (2008) 6211.
[10] (a) C. Rong, M.T. Pope, J. Am. Chem. Soc. 114 (1992) 2932;
(b) O.A. Kholdeeva, T.A. Trubitsina, G.M. Maksimov, A.V. Golovin, R.I. Maksimovs-
kaya, Inorg. Chem. 44 (2005) 1635.
[11] (a) J.C. Duhacek, D.C. Duncan, Inorg. Chem. 46 (2007) 7253;
(b) C. Dablemont, A. Proust, R. Thouvenot, C. Afonso, F. Fournier, J.C. Tabet, Inorg.
Chem. 43 (2004) 3514;
(c) K. Nomiya, H. Torii, K. Nomura, Y. Sato, J. Chem. Soc. Dalton Trans. (2001)
1506.
[12] (a) Q. Li, Y.G. Wei, J. Hao, Y.L. Zhu, L.S. Wang, J. Am. Chem. Soc. 129 (2007) 5810;
(b) H. Kang, J. Zubieta, J. Chem. Soc. Chem. Commun. (1988) 1192;
(c) Y. Lu, Y. Xu, E.B. Wang, J. Lu, C.W. Hu, L. Xu, Cryst. Growth Des. 5 (2005) 257.
[13] X.Y. Wei, M.H. Dickman, M.T. Pope, Inorg. Chem. 36 (1997) 130.
[14] (a) J.F.W. Keana, M.D. Ogan, J. Am. Chem. Soc. 108 (1986) 7951;
(b) R.K.C. Ho, W.G. Klemperer, J. Am. Chem. Soc. 100 (1978) 6772;
(c) C. Dablemont, C.G. Hamaker, R. Thouvenot, Z. Sojka, M. Che, E.A. Maatta, A.
Proust, Chem. Eur. J. 12 (2006) 9150;
Further, the 31P NMR spectra of R1-PW11Mn-SBA show the
chemical shift at ꢂ11.56 ppm (Fig. 3c). No shift in FT-IR bands and
the chemical shift indicate that the PW11Mn-SBA remains stable in
the present reaction condition.
(d) H. Kwen, S. Tomlinson, E.A. Maatta, C. Dablemont, R. Thouvenot, A. Proust, P.
Gouzerh, Chem. Commun. (2002) 2970.
[15] H. Li, C.J. Go´mez-Garcı´a, J. Peng, J. Sha, L. Wanga, Y. Yan, Inorg. Chim. Acta 362
(2009) 1957.
5. Conclusion
[16] K. Patel, P. Shringarpure, A. Patel, Transit. Met. Chem. 36 (2011) 171.
[17] T.J.R. Weakly, J. Chem. Soc. Dalton Trans. (1973) 341.
[18] V. Lahootun, C. Besson, R. Villanneau, F. Villain, L. Chamoreau, K. Boubekeur, S.
Blanchard, R. Thouvenot, A. Proust, J. Am. Chem. Soc. 129 (2007) 7127.
[19] S. Allenmark, Chirality 15 (2003) 409.
In conclusion, we have developed chiral POM-based materials
utilizing enantiopure SBA ligand and Keggin-type mono-manga-
nese substituted phosphotungstate via ligand substituted method.
Spectral studies show that the Keggin unit retains its structure