10
10. Thus, product yields for the benzophenone sensitization may
reflect competition for the benzylic hydrogen between the carbonyl
(Scheme 5a) and the nitro (Scheme 5c) functional groups.
[15] B. Lopez, D. Wink, J. Fukuto, Arch. Biochem. Biophys. 465 (2007) 430–436.
[16] M. Doyle, S. Mahapatro, R. Broene, J. Guy, J. Am. Chem. Soc. 110 (1988) 593–599.
[17] S. Maraj, S. Khan, X. Cui, R. Cammack, C. Joannou, M. Hughes, Analyst 120 (1995)
699–703.
[18] H. Ohshima, I. Gilibert, F. Bianchini, Free Radic. Biol. Med. 26 (1999) 1305–1313.
[19] F. Kohout, F. Lampe, J. Am. Chem. Soc. 87 (1965) 5795–5796.
[20] V. Shafirovich, S.V. Lymar, Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 7340–7345.
[21] K.M. Miranda, H.T. Nagasawa, J. Toscano, Curr. Top. Med. Chem. 5 (2005)
649–664.
[22] Y. Adachi, H. Nakagawa, K. Matsuo, T. Suzuki, N. Miyata, Chem. Commun. (2008)
5149–5151.
[23] A.D. Cohen, B.B. Zeng, S.B. King, J.P. Toscano, J. Am. Chem. Soc. 125 (2003)
1444–1445.
[24] G. Mayer, A. Heckel, Angew. Chem. Int. Ed. 45 (2006) 4900–4921.
[25] R.S. Givens, P.G. Conrad, A.L. Yousef, J. Leel, CRC Handbook of Organic Photo-
chemistry and Photobiology, second ed., CRC Press, Boca Raton, 2004 (Chapter
69).
[26] C. Walling, A.N. Naglieri, J. Am. Chem. Soc. 82 (1960) 1820–1825.
[27] T. Sakurai, S. Yamada, H. Inoue, Chem. Lett. (1983) 4975–4978.
[28] T. Sakurai, H. Yamamoto, S. Yamada, H. Inoue, Bull. Chem. Soc. Jpn. 58 (1985)
1174–1181.
[29] B. Hosangadi, P. Chhaya, M. Nimbalkar, N. Patel, Tetrahedron 43 (1987)
5375–5380.
[30] E. Lipczynska-Kochany, Chem. Rev. 91 (1991) 477–491.
[31] J.E. Johnson, M. Arfan, R. Hodzi, L.R. Caswell, S. Rasmussen, Photochem. Photo-
biol. 51 (1990) 139–144.
5. Conclusions
The stated aim of this work was to determine if selective exci-
tation of the 2NBn chromophore within 2NBn-1 would result in
increased release of 1. Quantum yields for the formation of 1
increased at longer wavelengths and the percent yields of the minor
products decreased, which supported the proposed hypothesis. The
totality of these results also suggested that all of the products
formed during direct photolysis of 2NBn-1 can be formed from
either the S1 or the T1 state. Given the wavelength-dependent quan-
tum yields for 1, the relatively constant quantum yields for the
minor products 7 and 10 over several wavelengths were taken as
an indication that two different processes were responsible for the
formation of 7 and 10. At longer wavelengths, it was suspected
that an alternative decomposition of I gave rise to these minor
products. Irradiation at higher energies was thought to allow easier
access to the triplet manifold through a , * singlet. Photosensiti-
zation indicated that equal amounts of 1 and 7 were formed from T1.
The position of the nitro substituent also influenced the observed
photochemistry. When the lowest energy excited state had charge
transfer character, hydrolysis became possible. Positioning of the
nitro substituent to disfavor the hydrogen abstraction dramatically
decreased the quantum yields for the loss of the starting materials,
and thus, the addition of a nitro substituent was not expected to
increase the amount of N–O bond homolysis.
[32] R. White, K. Oppliger, J. Johnson, J. Photochem. Photobiol. A 101 (1996) 197–200.
[33] M.M. Aly, A.M. Fahmy, F.F. Abdellatif, M.Z.A. Badr, Bull. Pol. Acad. Sci., Chem. 35
(1987) 47–52.
[34] Y. Il‘ichev, M. Schworer, J. Wirz, J. Am. Chem. Soc. 126 (2004) 4581–4595.
[35] A. Blanc, C.G. Bochet, J. Org. Chem. 67 (2002) 5567–5577.
[36] C. Bochet, Angew. Chem. Int. Ed. 40 (2001) 2071–2073.
[37] A. Blanc, C.G. Bochet, Org. Lett. 9 (2007) 2649–2651.
[38] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato,
X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.
Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J.
Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M.
Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo,
J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C.
Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth,
P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman,
J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Gaussian, Inc., Wallingford, CT,
2009.
[39] R. Stratmann, G. Scuseria, M. Frisch, J. Chem. Phys. 109 (1998) 8218–8224.
[40] G.A. Zhurko, D.A. Zhurko, ChemCraft, Pilmus Inc., Milpatas, CA, 2007.
[41] W.L.P. Armarego, D.D. Perrin, Purification of Laboratory Chemicals, Pergamon
Press Inc., Elmsford, NY, 1998.
[42] O. Miyata, T. Koizumi, H. Asai, R. Iba, T. Naito, Tetrahedron 60 (2004) 3893–3914.
[43] A.S. Singha, B.N. Misra, Indian J. Chem. 21B (1982) 361–363.
[44] A. Gissot, A. Volonterio, M. Zanda, J. Org. Chem. 70 (2005) 6925–6928.
[45] O. Brady, F. Peakin, J. Chem. Soc. (1930) 226–229.
References
[1] W. Flores-Santana, C. Switzer, L.A. Ridnour, D. Basudhar, D. Mancardi, S.
Donzelli, D.D. Thomas, K.M. Miranda, J.M. Fukuto, D.A. Wink, Arch. Pharm. Res.
32 (2009) 1139–1153.
[2] N. Paolocci, M. Jackson, B. Lopez, K. Miranda, C. Tocchetti, D. Wink, A. Hobbs, J.
Fukuto, Pharmacol. Therapeut. 113 (2007) 442–458.
[3] J.M. Fukuto, M.D. Bartberger, A.S. Dutton, N. Paolocci, D.A. Wink, K.N. Houk,
Chem. Res. Toxicol. 18 (2005) 790–801.
[4] D.A. Wink, K.M. Miranda, T. Katori, D. Mancardi, D.D. Thomas, L. Ridnour, M.G.
Espey, M. Feelisch, C.A. Colton, J.M. Fukuto, P. Pagliaro, D.A. Kass, N. Paolocci,
Am. J. Physiol. Heart Circ. Physiol. 285 (2003) H2264–H2276.
[5] K.M. Miranda, N. Paolocci, T. Katori, D.D. Thomas, E. Ford, M.D. Bartberger, M.G.
Espey, D.A. Kass, M. Feelisch, J.M. Fukuto, D.A. Wink, Proc. Natl. Acad. Sci. U. S.
A. 100 (2003) 9196–9201.
[6] E.G. DeMaster, B. Redfern, H.T. Nagasawa, Biochem. Pharmacol. 55 (1998)
2007–2015.
[7] H.T. Nagasawa, E.G. DeMaster, B. Redfern, F.N. Shirota, D.J. Goon, J. Med. Chem.
33 (1990) 3120–3122.
[46] P. Mamalis, J. Green, D. Mchale, J. Chem. Soc. (1960) 229–238.
[47] N.J. Bunce, J. LaMarre, S.P. Vaish, Photochem. Photobiol. 39 (1984) 531–533.
[48] M. Schworer, J. Wirz, Helv. Chim. Acta 84 (2001) 1441–1458.
[49] R. Yip, Y. Wen, D. Gravel, R. Giasson, D. Sharma, J. Phys. Chem. 95 (1991)
6078–6081.
[8] N. Paolocci, T. Katori, H. Champion, M. St John, K. Miranda, J. Fukuto, D. Wink,
D. Kass, Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 5537–5542.
[9] P. Pagliaro, D. Mancardi, R. Rastaldo, C. Penna, D. Gattullo, K.M. Miranda, M.
Feelisch, D.A. Wink, D.A. Kass, N. Paolocci, Free Radic. Biol. Med. 34 (2003)
33–43.
[10] C.G. Tocchetti, W. Wang, J.P. Froehlich, S. Huke, M.A. Aon, G.M. Wilson, G. Di
Benedetto, B. O’Rourke, W.D. Gao, D.A. Wink, J.P. Toscano, M. Zaccolo, D.M. Bers,
H.H. Valdivia, H. Cheng, D.A. Kass, N. Paolocci, Circ. Res. 100 (2007) 96–104.
[11] J.M. Fukuto, K. Chiang, R. Hszieh, P. Wong, G. Chaudhuri, J. Pharmacol. Exp. Ther.
263 (1992) 546–551.
[12] E. Bermejo, D.A. Sáenz, F. Alberto, R.E. Rosenstein, S.E. Bari, M.A. Lazzari,
Thromb. Haemost. 94 (2005) 578–584.
[13] A. Ellis, C.G. Li, M.J. Rand, Br. J. Pharmacol. 129 (2000) 315–322.
[14] W. Kim, Y. Choi, P. Rayudu, P. Das, W. Asaad, D. Arnelle, J. Stamler, S. Lipton,
Neuron 24 (1999) 461–469.
[50] D. Gravel, R. Giasson, D. Blanchet, R. Yip, D. Sharma, Can. J. Chem. 69 (1991)
1193–1200.
[51] R. Yip, D. Sharma, R. Giasson, D. Gravel, J. Phys. Chem. 89 (1985) 5328–5330.
[52] R. Yip, D. Sharma, R. Giasson, D. Gravel, J. Phys. Chem. 88 (1984) 5770–5772.
[53] L. Hviid, J.W. Verhoeven, A.M. Brouwer, M.N. Paddon-Row, J. Yang, Photochem.
Photobiol. Sci. 3 (2004) 246–251.
[54] D.E. Falvey, C. Sundararajan, Photochem. Photobiol. Sci. 3 (2004) 831–838.
[55] N. Turro, V. Ramamurthy, W. Cherry, W. Farneth, Chem. Rev. 78 (1978)
125–145.
[56] S.L. Murov, I. Carmichael, G.L. Hug, Handbook of Photochemistry, second ed.,
Marcel Dekker Inc., New York, NY, 1993.
[57] R. Finnegan, D. Knutson, J. Am. Chem. Soc. 90 (1968) 1670–1671.
[58] N. Turro, Modern Molecular Photochemistry, University Science Books, Sausal-
ito, CA, 1991 (Chapter 6).