266
T. Ishida et al. / Applied Catalysis A: General 413–414 (2012) 261–266
Scheme 3. A possible reaction pathway for the N-alkylation of aniline with benzyl alcohol over Au/ZrO2.
efficiency. Furthermore, the addition of 2-propanol as a hydrogen
donor lowered the selectivity to sec. amine over Au/ZrO2 (Table 3,
entry 2). It is indicated that excess amount of alcohols inhibited the
adsorption of aniline onto ZrO2 surfaces, resulting the imine for-
mation in the reaction solution. Therefore, it can be concluded that
aniline adsorption ability of oxide supports plays an important role
to achieve high hydrogen transfer efficiency.
References
[1] R.N. Salvatore, C.H. Yoon, K.W. Jung, Tetrahedron 57 (2001) 7785–7811.
[2] A.J.A. Watson, J.M.J. Williams, Science 329 (2010) 635–636.
[3] Y. Watanabe, Y. Tsuji, H. Ige, Y. Ohsugi, T. Ohta, J. Org. Chem. 49 (1984) 3359.
[4] K.-I. Fujita, Y. Enoki, R. Yamaguchi, Tetrahedron 64 (2008) 1943–1954.
[5] B. Blank, S. Michlik, R. Kempe, Chem. Eur. J. 15 (2009) 379–3799.
[6] A. Tillack, D. Hollmann, D. Michalik, M. Beller, Tetrahedron Lett. 47 (2006)
8881–8885.
[7] M.H.S.A. Hamid, C.L. Allen, G.W. Lamb, A.C. Maxwell, H.C. Maytum, A.J.A. Wat-
son, J.M.J. Williams, J. Am. Chem. Soc. 131 (2009) 1766–1774.
[8] J.W. Kim, K. Yamaguchi, N. Mizuno, J. Catal. 263 (2009) 205–208.
[9] K. Shimizu, M. Nishimura, A. Satsuma, ChemCatChem 1 (2009) 497–503.
[10] X. Cui, Y. Zhang, F. Shi, Y. Deng, Chem. Eur. J. 17 (2011) 1021–1028.
[11] A. Corma, T. Ródenas, M.J. Sabater, Chem. Eur. J. 16 (2010) 254–260.
[12] J. He, K. Yamaguchi, N. Mizuno, Chem. Lett. 39 (2010) 1182–1183.
[13] M. Haruta, Chem. Rec. 3 (2003) 75–87.
[14] T. Ishida, N. Kawakita, T. Akita, M. Haruta, Gold Bull. 42 (2009) 267–274.
[15] L. He, X.-B. Lou, J. Ni, Y.-M. Liu, Y. Cao, H.-Y. He, K.-N. Fan, Chem. Eur. J. 16 (2010)
13965–13969.
[16] Q. Peng, Y. Zhang, F. Shi, Y. Deng, Chem. Commun. 47 (2011) 6476–6478.
[17] T. Ishida, N. Kinoshita, H. Okatsu, T. Akita, T. Takei, M. Haruta, Angew. Chem.
Int. Ed. 47 (2008) 9265–9268.
[18] T. Ishida, M. Nagaoka, T. Akita, M. Haruta, Chem. Eur. J. 14 (2008) 8456–8460.
[19] M. Haruta, N. Yamada, T. Kobayashi, S. Iijima, J. Catal. 115 (1989) 301–309.
[20] M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M.H. Genet, B. Delmon, J.
Catal. 144 (1993) 175–192.
[21] D.A.H. Canningham, W. Vogel, H. Kageyama, S. Tsubota, M. Haruta, J. Catal. 177
(1998) 1–10.
5. Conclusions
We have demonstrated that Au/ZrO2 works as an efficient cat-
alyst for the N-alkylation of aniline with benzyl alcohol to yield
secondary amine using equimolar amount of substrates without
additives under N2 at an atmospheric pressure. Although Au/CeO2
showed the highest catalytic activity for the dehydrogenation of
alcohol in the absence of aniline, the hydrogen transfer efficiency
was lower than that of Au/ZrO2 due to the lack of aniline adsorption
ability. It was revealed that not only basic and acidic properties of
metal oxide surfaces but also aniline adsorption ability by hydro-
gen bonding were important in the N-alkylation and that aniline
adsorption might influence on the hydrogen transfer efficiency to
give secondary amine in high yields.
[22] T. Ishida, M. Haruta, ChemSusChem 2 (2009) 538–541.
[23] K. Tanaka, A. Ozaki, J. Catal. 8 (1967) 1–7.
Acknowledgements
[24] A. Abad, A. Corma, H. García, Chem. Eur. J. 14 (2008) 212–222.
[25] W. Fang, J. Chen, Q. Zhang, W. Deng, Y. Wang, Chem. Eur. J. 17 (2011) 1247–1256.
[26] M. Tanaka, S. Ogasawara, J. Catal. 25 (1972) 111–117.
[27] R. Sokoll, H. Hobert, J. Catal. 125 (1990) 285–291.
[28] M. Vijayaraj, B. Murugan, S. Umbarkar, S.G. Hegde, C.S. Gopinath, J. Mol. Catal.
A: Chem. 231 (2005) 169–180.
We thank Mr. Y. Misaki of Tokyo Metropolitan University for
helping us with TEM observations. This work was financially sup-
ported by JST-CREST, a Grant-in-Aid for Young Scientists (B) (no.
21750160) from the Ministry of Education, Culture, Sports, Science,
and Technology, Japan.