Scheme 2. Production of DHA and formic acid via oxidation of secondary and primary hydroxyl groups, respectively.
With regard to the mechanism of the iron-catalyzed alcohol oxidation, previous studies proposed various mechanistic pathways [16a,
2
7]. There is a common agreement about initial reaction of the iron compound with the peroxide to give a species containing the Fe-
O-O-R mojety (R = H or alkyl): this iron complex is not catalytically active, but it can generate the active catalyst (or catalysts). It
has been proposed that the fate of the iron-peroxo intermediate can undergo at least two different decomposition routes, namely
homolytic and heterolytic reactions. The former route produces radical species which promote oxidation reactions with radical
mechanism, typically poorly selective. At variance, the heterolytic decomposition probably forms high valent iron-oxo species, the
catalytic activity and selectivity of which are strongly influenced by the nature of the other ligands coordinated to iron; the role of
high valent iron-oxo species in oxidation catalysis has been the object of both experimental and theoretical studies [13a, 28].
Evidence in favour of substrate coordination is uncommon for iron catalyzed alcohol oxidation [14b], on the contrary most studies
propose catalytic mechanisms which exclude alcohol coordination to the iron centre [16a, 29]. In the present case, ESI-MS spectra of
solutions containing the iron salt, BPA and glycerol did not provide evidence for coordination of glycerol to the metal; on the other
hand, in the MS spectra of catalytic mixtures no peaks could be assigned to iron-BPA oxo or peroxo complexes.
Finally, our findings relative to the nature of the iron precursor, i.e. the similar results obtained using Fe(II) and Fe(III) triflates, are
compatible with formation of Fe(IV) or Fe(V) oxo species, indipendently from the initial iron oxidation state. The worse catalytic
results observed when using FeCl
previously proposed [30].
2
as precursor can be explained in terms of formation of dimeric inactive or less active species, as
5
. Conclusions
The results here reported describe the properties of iron complexes with the polydentate ligand BPA as effective catalysts for the
oxidation of glycerol. In all the catalytic reactions only two products were detected, namely dihydroxyacetone and formic acid; such
products appear to be obtained by two different pathways, promoted by different catalytic species. By tuning the experimental
conditions, although conversions exceeding 50% were never obtained, complete suppression of the reaction leading to formic acid
was achieved: in these conditions DHA was formed with up to 100 % selectivity. To the best of our knowledge, this study represents
the first example of iron-catalyzed selective oxidation of glycerol to DHA; moreover, the catalytic reaction here described is a
remarkable example of green process, from the point of view of metal, oxidant, reaction medium as well as of the experimental
conditions employed.
Acknowledgements
The Authors thank Dr. Fabio Hollan for the ESI-MS spectra. Finantial support from the University of Trieste (FRA 2012) is
gratefully acknowledged.
Notes and references
[1] (a) O. R. Inderwildi, D. A. King, Energy Environ. Sci 2 (2009) 343-346; (b) R. Luque, L. Herrero-Davila, J. M. Campelo, J. H. Clark, J. M.
Hidalgo, D. Luna, J. M. Marinas, A. A. Romero, Energy Environ. Sci. 1 (2008) 542-564.
[2] (a) C.-H. Zhou, J. N. Beltramini, Y.-X. Fan, G. Q. Lu, Chem. Soc. Rev. 37 (2008) 527-549; (b) M. Pagliaro, R. Ciriminna, H. Kimura, M. Rossi,
C. Della Pina, Angew. Chem. Int. Ed. 46 (2007) 4434-4440; (c) A. Behr, J. Eilting, K. Irawadi, J. Leschinski, F. Lindner, Green Chem. 10 (2008)
13-30; (d) A. E. Diaz-Alvarez, J. Francos, B. Lastra-Barreira, P. Crochet, V. Cadierno, Chem. Commun. 11 (2011) 6208-6227; (e) N. H. Tran, G.
S. Kamali Kannangara, Chem. Soc. Rev. 42 (2013) 9454-9479.
[3] B. Katryniok, H. Kimura, E. Skrzynska, J.-S. Girardon, P. Fongarland, M. Capron, R. Ducoulombier, N. Mimura, S. Paul, F. Dumeignil, Green
Chem. 13 (2011) 1960-1979.
[
[
[
[
4] F. Jerome, Y. Poilloux, J. Barrault, ChemSusChem 1 (2008) 586-613.
5] M. Besson, P. Gallezot, C. Pinel, Chem. Rev. 114 (2014) 1827-1870 and references cited therein.
6] (a) E. Farnetti, J. Kašpar, C. Crotti, Green Chem. 11 (2009) 704-709; (b) C. Crotti, J. Kašpar, E. Farnetti, Green Chem. 12 (2010) 1295-1300.
7] (a) A. Azua, J. A. Mata, E. Peris, Organometallics 30 (2011) 5532-5536; (b) A. Azua, J. A. Mata, E. Peris, F. Lamaty, J. Martinez, E. Colacino,
Organometallics 31 (2012) 3911-3919.
[8] (a) R. M. Painter, D. M. Pearson and R. M. Waymouth, Angew. Chem. Int. Ed. 49 (2010) 9456-9459; (b) A. G. De Crisci, K. Chung, A. G.
Oliver, D. Solis-Ibarra, R. M. Waymouth, Organometallics 32 (2013) 2257-2266.
[9] S. Enthaler, K. Junge, M. Beller, Angew. Chem. Int. Ed. 47 (2008) 3317-3321.
[10](a) K. Junge, K. Schroeder, M. Beller, Chem. Commun. 47 (2011) 4849-4859 and references cited herein; (b) B. A. F. Le Bailly, S. P. Thomas,
RCS Advances 1 (2011) 1435-1445; (c) G. Wienhoefer, F. A. Westerhaus, R.V. Jagadeesh, K. Junge, H. Junge, M. Beller, Chem. Commun. 48
(2012) 4827-4829; (d) L.-Q. Lu, Y. Li, K. Junge, M. Beller, Angew. Chem. Int. Ed. 52 (2013) 8382-8386; (e) S. Fleischer, S. Zhou, K. Junge, M.
Beller, Angew. Chem. Int. Ed. 52 (2013) 5120-5124; (f) S. Warratz, L. Postigo, B. Royo, Organometallics 32 (2013) 893-897; (g) R. Langer, G.
Leitus, Y. Ben-David, D. Milstein, Angew. Chem. Int. Ed. 50 (2011) 2120-2124.
[
[
[
[
11](a) R. H. Morris, Chem. Soc. Rev. 38 (2009) 2282-2291 and references cited therein; (b) Y. Li, S. Lu, X. Wu, J. Xiao, W. Shen, Z. Dong, J. Gao,
J. Am. Chem. Soc. 136 (2014) 4031-4039.
12](a) M. R. Bukowski, P. Comba, A. Lienke, C. Limberg, C. Lopez de Laorden, R. Mas-Ballestre, M. Merz, L. Que Jr., Angew. Chem. Int. Ed. 45
(2006) 3446-3449; (b) O. Cussò, I. Garcia-Bosch, X. Ribas, J. Lloret-Fillol, M. Costas, , J. Am. Chem. Soc. 135 (2013) 14871-14878.
13](a) A.-R. Han, Y. J. Jeong, Y. Kang,J. Y. Lee, M. S. Seo, W. Nam, Chem. Comm. (2008) 1076-1078; (b) S. Chakraborty, H. Guan, Dalton
Trans. 39 (2010) 7427-7436; (c) A. A. Mikhailine, M. I. Mazharul, A. J. Lough, R. H. Morris, J. Am. Chem. Soc. 134 (2012) 12266-12280.
14](a) H. Hosseini-Monfared, C. Nather, H. Winkler, C. Janiak, Inorganica Chimica Acta 391 (2012) 75-82; (b) B. Biswas, A. Al-Hunaiti, M. T.
Raisanen, S. Ansalone, M. Leskela, T. Repo, Y.-T. Chen, H.-L. Tsai, A. D. Naik, A. P. Railliet, Y. Garcia, R. Ghosh, N. Kole, Eur.J. Inorg.
Chem. (2012) 4479-4485; (c) A. Bekish, Tetrahedron Letters 53 (2012) 3082-3085; (d) R. R. Fernandes, J. Lasri, M. F. C. Guendes da Silva, J.
A. L. da Silva, J. R. Frausto da Silva, A. J. L. Pombeiro, J. Mol. Catal. A: Chem 351 (2011) 100-111; (e) S. A. Moyer, T. W. Funk, Tetrahedron
7
Page 7 of 9