Cui, Li & Chen
COMMUNICATION
only 28.2 mol styrene mol1 metal h . Obviously, it is
the unique mesoporous nanostructure of TS-1 with
shortened mass transfer path that promoted their cata-
lytic activity. Moreover, the TOF values of meso-TS-1
surpassed those of typical TS-1 and other MFI based
catalysts for the same reaction in the literature (Table
S2). All these results promise great potentials of meso-
porous TS-1 nanocrystals as efficient catalysts.
1
(21331004, 21301116) and Shanghai Eastern Scholar
Program.
References
[
1] (a) Zhou, J.; Hua, Z.; Cui, X.; Ye, Z.; Cui, F.; Shi, J. Chem. Commun.
2
2
010, 46, 4994; (b) Zhang, X.; Wang, Y.; Xin, F. Appl. Catal. A: Gen.
006, 307, 222; (c) Na, K.; Jo, C.; Kim, J.; Ahn, W. S.; Ryoo, R.
ACS Catal. 2011, 1, 901; (d) Serrano, D.; Sanz, R.; Pizarro, P.;
Moreno, I.; Medina, S. Appl. Catal. B: Environ. 2014, 146, 35.
[
[
2] Lin, M.; Xia, C.; Zhu, B.; Li, H.; Shu, X. Chem. Eng. J. 2016, 295,
3
70.
3] (a) Wilkenhöner, U.; Langhendries, G.; Laar, F.; Baron, G. V.; Gam-
mon, D. W.; Jacobs, P. A.; Steen, E. J. Catal. 2001, 203, 201; (b)
Tuel, A.; Taarit, Y. B. Appl. Catal. A: Gen. 1993, 102, 69; (c) Gontier,
S.; Tuel, A. Zeolites 1996, 16, 184; (d) Wang, X. S.; Guo, X. W.
Catal. Today 1999, 51, 177.
100
conversion
styrene oxide
benzaldehyde
phenylacetaldehyde
80
60
40
20
0
[4] (a) Iwasaki, T.; Isaka, M.; Nakamura, H.; Yasuda, M.; Watano, S.
Microporous Mesoporous Mater. 2012, 150, 1; (b) Deng, X.; Wang,
Y.; Shen, L.; Wu, H.; Liu, Y.; He, M. Ind. Eng. Chem. Res. 2013, 52,
1190.
[
5] (a) Grieneisen, J.; Kessler, H.; Fache, E.; Le Govic, A. Microporous
Mesoporous Mater. 2000, 37, 379; (b) Xue, T.; Wang, Y. M.; He, M.
Y. Microporous Mesoporous Mater. 2012, 156, 29.
[
[
6] Yang, L.; Xin, F.; Lin, J.; Zhuang, Z.; Sun, R. RSC Adv. 2014, 4,
2
7259.
7] (a) Meng, X.; Wu, Q.; Chen, F.; Xiao, F. S. Sci. China Chem. 2015,
8, 6; (b) Zhu, L.; Zhang, J.; Wang, L.; Wu, Q.; Bian, C.; Pan, S.;
5
blank
meso-TS-1 bulk-TS-1
Meng, X.; Xiao, F. S. J. Mater. Chem. A 2015, 3, 14093.
8] (a) Xin, H.; Zhao, J.; Xu, S.; Li, J.; Zhang, W.; Guo, X.; Hensen, E.
J.; Yang, Q.; Li, C. J. Phys. Chem. C 2010, 114, 6553; (b) Zhu, Y.;
Hua, Z.; Zhou, X.; Song, Y.; Gong, Y.; Zhou, J.; Zhao, J.; Shi, J. RSC
Adv. 2013, 3, 4193; (c) Liang, W.; Jin, Y.; Yu, Z.; Wang, Z.; Han, B.;
He, M.; Min, E. Zeolites 1996, 17, 297; (d) Wu, P.; Nuntasri, D.;
Ruan, J.; Liu, Y.; He, M.; Fan, W.; Terasaki, O.; Tatsumi, T. J. Phys.
Chem. B 2004, 108, 19126; (e) Sun, M.; Zhao, T.; Wang, J.; Ma, Z.;
Li, F., Chin. J. Chem. 2015, 33, 1057; (f) Koohsaryan, E.; Anbia, M.
Chin. J. Catal. 2016, 37, 447.
[
Figure 3 Catalytic performance of styrene epoxidation over
various samples. Typical reaction conditions for epoxidation of
styrene: 5 mmol styrene, 50 mg of catalyst, 10 mmol H O (30%
2
2
aqueous), 2.5 mL of CH CN, 70 ℃, 4 h. The mesoporous TS-1
3
nanocrystals were denoted as meso-TS-1, whilst corresponding
bulk phases (bulk-TS-1) was also tested as control sample.
Conclusions
[9] (a) Blasco, T.; Corma, A.; Navarro, M.; Pariente, J. P. J. Catal. 1995,
56, 65; (b) Han, Y.; Xiao, F. S.; Wu, S.; Sun, Y.; Meng, X.; Li, D.;
1
In summary, we have successfully synthesized meso-
porous TS-1 zeolites through the Kirkendall effect on
the growth of zeolite nanocrystals. Inorganic silicon
source, lower consumption of organic base TPAOH,
high yields, mild synthetic conditions, high mesoporos-
ity and small particle size, all these features make our
template-free method suitable for large-scale synthesis
of functional nanocrystals of mesoporous zeolites with
relatively low cost for practical uses. The advantages of
mesoporous-microporous zeolites have already been
demonstrated by the much better catalytic performance
as compared with bulk phase counterparts. More efforts
will be devoted to extending our method to the fabrica-
tion of other microporous zeolites (e.g. FAU, LTA, Beta,
MOR) for specific purpose of their real applications in
the future.
Lin, S.; Deng, F.; Ai, X. J. Phys. Chem. B 2001, 105, 7963; (c) Cler-
ici, M. G.; Domine, M. E. Liquid Phase Oxidation via Heterogene-
ous Catalysis, John Wiley & Sons, Inc. 2013, p. 21; (d) Li, C.;
Xiong, G.; Xin, Q.; Liu, J.; Ying, P.; Feng, Z.; Li, J.; Yang, W.; Wang,
Y.; Wang, G.; Liu, X.; Lin, M.; Wang, X.; Min, E. Angew. Chem., Int.
Ed. 1999, 38, 2220.
[
10] (a) Cui, T. L.; Li, X. H.; Lv, L. B.; Wang, K. X.; Su, J.; Chen, J. S.
Chem. Commun. 2015, 51, 12563; (b) Cui, T. L.; Ke, W. Y.; Zhang,
W. B.; Wang, H. H.; Li, X. H.; Chen, J. S. Angew. Chem., Int. Ed.
2
016, 55, 9178; (c) Cui, T. L.; Lv, L. B.; Zhang, W. B.; Li, X. H.;
Chen, J. S. Catal. Sci. Technol. 2016, 6, 5262.
[11] Zecchina, A.; Spoto, G.; Bordiga, S.; Ferrero, A.; Petrini, G.;
Leofanti, G.; Padovan, M. Stud. Surf. Sci. Catal. 1991, 69, 251.
[
12] (a) Tian, Y.; Li, G. D.; Chen, J. S. J. Am. Chem. Soc. 2003, 125,
6223; (b) Li, L.; Zhou, X. S.; Li, G. D.; Pan, X. L.; Chen, J. S. An-
6
gew. Chem., Int. Ed. 2009, 48, 6678; (c) Li, L.; Li, G. D.; Yan, C.;
Mu, X. Y.; Pan, X. L.; Zou, X. X.; Wang, K. X.; Chen, J. S. Angew.
Chem., Int. Ed. 2011, 50, 8288; (d) Li, L.; Cai, Y. Y.; Li, G. D.; Mu,
X. Y.; Wang, K. X.; Chen, J. S. Angew. Chem., Int. Ed. 2012, 51,
4702; (e) Li, X. H.; Baar, M.; Blechert, S.; Antonietti, M. Sci. Rep.
Acknowledgement
2
013, 3, 1743; (f) Li, X. H.; Cai, Y. Y.; Gong, L. H.; Fu, W.; Wang,
This work was financially supported by National
Basic Research Program of China (2013CB934102), the
National Natural Science Foundation of China
K. X.; Bao, H. L.; Wei, X.; Chen, J. S. Chem. Eur. J. 2014, 20,
16732; (g) Wang, J. F.; Wang, K. X.; Wang, J. Q.; Li, L.; Chen, J. S.
Chem. Commun. 2012, 48, 2325.
(Pan, B.; Fan, Y.)
4
www.cjc.wiley-vch.de
© 2017 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Chin. J. Chem. 2017, XX, 1—4