10.1002/cctc.201700671
ChemCatChem
COMMUNICATION
10941–10948; j) G.-Z. Wang, X.-L Li, J.-J. Dai, H.-J Xu, J. Org.
Chem. 2014, 79, 7220–7225; k) A. Gonzalez-de-Castro, J. Xiao, J. Am.
Chem. Soc. 2015, 137, 8206–8218; l) G. Urgoitia, R. SanMartin, M. T.
Herrero, E. Domínguez, Adv. Synth. Catal. 2016, 358, 1150–1156; m)
Y. Deng, X.-J Wei, H. Wang, Y. Sun, T Noël, X. Wang, Angew. Chem.
Int. Ed. 2017, 56, 832–836.
90
80
70
60
50
40
30
20
10
0
[10] S. Caron, R. W. Dugger, S. G. Ruggeri, J. A. Ragan, D. H. B. Ripin,
Chem. Rev. 2006, 106, 2943–2989.
[11] D. Wang, J. N. Jaworski, S. S. Stahl, in Liquid Phase Aerobic Oxidation
Catalysis: Industrial Applications and Academic Perspectives (Eds.:S. S.
Stahl, P. L. Alsters), Wiley-VCH, Weinheim, 2016, p 115.
0
10
20
30
40
50
Operation time (min)
[12] J. Tsuji, Synthesis, 1984, 369–384.
Conversion (1) (%)
Aldehyde (2) yield (%)
[13] A. Wang, H. Jiang, J. Org. Chem. 2010, 75, 2321–2326.
[14] Other important contributions (in batch) were: PdCl2 and a biphasic
supercritical CO2 and PEG-300 solvent mix, see: a) J. Q. Wang, F. Cai,
E. Wang, L. N. He, Green Chem. 2007, 9, 882–887; b) water soluble
Pd(II) PEG-2000 anchored bidentate dipyridyl ligand, see: B. Feng, Z.
Hou, X. Wang, Y. Hu, H. Li, Y. Qiao, Green Chem. 2009, 11, 1446–
1452.
Acetophenone (4) yield (%) Benzoic acid (5) yield (%)
Figure 3. Long run profiles. For reaction conditions and analytics, see Table 2
entry 1. No samples were taken until the carrier solvent (colorless) had passed
through (indicated by the double headed arrow) and color (reaction mixture)
was observed at the BPR.
[15] a) Also known as the “limiting oxygen concentration”, see: a) P. M.
Osterberg, J. K. Niemeier, C. J. Welch, J. M. Hawkins, J. R. Martinelli, T.
E. Johnson, T. W. Root, S. S. Stahl, Org. Process Res. Dev. 2015, 19,
1537–1543; Sanofi has defined an oxygen concentration of 5% by
volume as the maximum oxygen concentration admissible for pilot-plant
scale or larger, see: b) M. P. Feth, K. Rossen, A. Burgard, Org. Process
Res. Dev. 2013, 17, 282–293;
In conclusion, we have demonstrated a Pd-catalyzed direct
oxidation of olefins into carbonyl compounds using a continuous-
flow reactor. Low catalyst loadings (0.1 mol%) provided
moderate to excellent product yields in a short 25 min residence
time. The presence of a radical scavenger was shown to have a
negative effect on the olefin cleavage and indicates the reaction
takes place via a free radical mechanism. A major advantage of
the flow protocol is the ability to handle pure O2 under process
intensified conditions in a safe and scalable manner.
[16] For reviews on flow chemistry, see: a) B. Gutmann, D. Cantillo, C. O.
Kappe, Angew. Chem. Int. Ed. 2015, 54, 6688–6728; b) M. Movsisyan,
E. I. P. Delbeke, J. K. E. T. Berton, C. Battilocchio, S. V Ley, Chem.
Soc. Rev. 2016, 45, 83–117; for a gas-liquid flow review, see: c) C. J.
Mallia, I. R. Baxendale, Org. Process Res. Dev. 2015, 20, 327–360; for
reviews on aerobic oxidations in flow, see: d) H. P. L. Gemoets, Y. Su,
M. Shang, V. Hessel, R. Luque, T. Noël, Chem. Soc. Rev. 2016, 45 83–
117; and e) B. Pieber, C. O. Kappe, Top. Organomet. Chem. 2015, 57,
97−136.
Keywords: continuous flow • oxidation • olefin cleavage •
[17] For an overview on the opportunities of aerobic oxidations using flow
2016,1, 595–612.
molecular oxygen • Pd-catalyzed • gas-liquid transformations
[1]
a) F. E. Kuhn, R. W. Fischer, W. A. Herrmann, T. Weskamp, in
Transition Metals for Organic Synthesis, Vol. 2 (Eds.: M. Beller, C.
Bolm), Wiley-VCH: Weinheim, 2004, p 427; b) D. G. Lee, T. Chen, in
Comprehensive Organic Synthesis, Vol 7 (Eds: B. M. Trost, I. Fleming),
Pergamon, Oxford, 1991, p 541.
[18] C. A. Hone, D. M. Roberge, C. O. Kappe, ChemSusChem 2017, 10,
32–41.
[19] A similar flow reactor configuration has been previously reported by our
group for aerobic oxidations involving Pd catalysis, see: a) B. Gutmann,
U. Weigl, D. P. Cox, C. O. Kappe, Chem. Eur. J. 2016, 22, 10393–
10398; b) B. Gutmann, P. Elsner, D. P. Cox, U. Weigl, D. M. Roberge,
C. O. Kappe, ACS Sust. Chem. Eng. 2016, 4, 6048–6061.
[20] PEG is also known to reduce Pd(II) to Pd(0), see: C. C. Luo, Y. H.
Zhang, Y. G. Wang, J. Mol. Catal. A: Chem. 2005, 229, 7–12.
[21] J. Chen, S. K. Spear, J. G. Huddleston, R. D. Rogers, Green Chem.
2005, 7, 64–82.
[2]
[3]
[4]
R. Criegee, Angew. Chem. Int. Ed. Engl. 1975, 14, 745–752.
M. Nobis, D. M. Roberge, Chim. Oggi 2011, 29(1), 56−58.
Serious accidents involving explosions have been reported, see: a) K.
Koike, G. Inoue, T. J. Fukuda, Chem. Eng. Jpn. 1999, 32, 295–299; b)
R. A. Ogle, J. L. Schumacher, Process Saf. Prog. 1998, 17, 127–133.
B. R. Travis, R. S. Narayan, B. Borhan, J. Am. Chem. Soc. 2002, 124,
3824–3825
[5]
[6]
[7]
D. Yang, C. Zhang, J.Org. Chem. 2001, 66, 4814–4818.
[22] For examples of PEG-400 in flow synthesis, see: a) A. Gioiello, E.
Rosatelli, M. Teofrasti, P. Filipponi, R. Pellicciari, ACS Comb. Sci. 2013,
15, 235−239; b) A.-C. Bédard, S. Régnier, S. K. Collins, Green Chem.
2013, 15, 1962–1966.
K. Miyamoto, N. Tada, M. Ochiai, J. Am. Chem. Soc. 2007, 129, 2772–
2773
[8]
[9]
L. Miyamoto, Y. Sei, K. Yamaguchi, M. Ochiai, J. Am. Chem. Soc. 2009,
131, 1382–1383.
[23] A. H. M. de Vries, J. M. C. A. Mulders, J. H. M. Mommers, H. J. W.
Henderickx, J. G. de Vries, Org. Lett. 2003, 5, 3285–3288.
[24] TON was calculated as follows: TON = (moles of styrene) × (yield of
benzaldehyde) / (moles of Pd).
a) Y. Hayashi, M. Takeda, Y. Miyamoto, M. Shoji, Chem. Lett. 2002, 31,
414–415; b) A. Dhakshinamoorthy, K. Pitchumani, Tetrahedron 2006,
62, 9911–9918; c) A. Dhakshinamoorthy, K. Pitchumani, Catal.
Commun. 2009, 10, 872–878; d) C.-X Miao, B. Yu, L.-N. He, Green
Chem. 2011, 13, 541–544 e) R. Lin, F. Chen, N. Jiao Org. Lett. 2012,
14, 4158–4161; f) C. Sun, B. Hu, Z. Liu, Chem. Eng. J. 2013, 232, 96–
103; g) A. Fujiya, A. Kariya, T. Nobuta, N. Tada, T. Miura, A. Itoh,
Synlett 2014, 25(6), 884–888; h) M. M. Hossain, S. G. Shyu,
Tetrahedron 2014, 70, 251–255; i) A. Rubinstein, P. Jiménez-Lozanao,
J. J. Carbý, J. M. Poblet, R. Neumann, J. Am. Chem. Soc. 2014, 136,
[25] a) J. Xie, H. Jiang, Y. Cheng, C. Zhu, Chem. Commun. 2012, 979–981;
b) H. Jiang, Q.-D. Qiao, H. Gong, Petrol. Sci. Technol. 1999, 17, 955–
965.
[26] The yields given are HPLC or GC assay yields based on absolute
quantities measured against an internal standard. The compounds
were fully isolated and characterized by Wang and Jiang, see ref 13.
This article is protected by copyright. All rights reserved.